scispace - formally typeset
Search or ask a question
Author

Just L. Herder

Other affiliations: University of Twente
Bio: Just L. Herder is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Compliant mechanism & Stiffness. The author has an hindex of 33, co-authored 217 publications receiving 3916 citations. Previous affiliations of Just L. Herder include University of Twente.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an alternative for harvesting low-frequency broadband vibrations, with energy harvesters with two stable configurations, is discussed, and the challenges related to nonlinear dynamics are briefly discussed.
Abstract: Powering electronics without depending on batteries is an open research field. Mechanical vibrations prove to be a reliable energy source, but low-frequency broadband vibrations cannot be harvested effectively using linear oscillators. This article discusses an alternative for harvesting such vibrations, with energy harvesters with two stable configurations. The challenges related to nonlinear dynamics are briefly discussed. Different existing designs of bistable energy harvesters are presented and classified, according to their feasibility for miniaturization. A general dynamic model for those designs is described. Finally, an extensive discussion on quantitative measures of evaluating the effectiveness of energy harvesters is accomplished, resulting in the proposition of a new dimensionless metric suited for a broadband analysis.

358 citations

Proceedings ArticleDOI
01 Jan 2006
TL;DR: The combination of static balancing and tense-grity structures has resulted in a new class of mechanisms called Statically Balanced Tensegrity Mechanisms as mentioned in this paper, which are prestressed structures that are in equilibrium in a wide range of positions.
Abstract: The combination of static balancing and tensegrity structures has resulted in a new class of mechanisms: Statically Balanced Tensegrity Mechanisms. These are prestressed structures that are in equilibrium in a wide range of positions, and thus exhibit mechanism-like properties. This paper describes the design of a prototype model of a statically balanced tensegrity mechanism based on a classic tensegrity structure.Copyright © 2006 by ASME

152 citations

Journal ArticleDOI
TL;DR: A novel systematic classification method can successfully categorize all the existing control interfaces used to operate active movement-assistive devices providing a comprehensive overview of the state of the world of non-invasive control interfaces.
Abstract: Active movement-assistive devices aim to increase the quality of life for patients with neuromusculoskeletal disorders. This technology requires interaction between the user and the device through a control interface that detects the user’s movement intention. Researchers have explored a wide variety of invasive and non-invasive control interfaces. To summarize the wide spectrum of strategies, this paper presents a comprehensive review focused on non-invasive control interfaces used to operate active movement-assistive devices. A novel systematic classification method is proposed to categorize the control interfaces based on: (I) the source of the physiological signal, (II) the physiological phenomena responsible for generating the signal, and (III) the sensors used to measure the physiological signal. The proposed classification method can successfully categorize all the existing control interfaces providing a comprehensive overview of the state of the art. Each sensing modality is briefly described in the body of the paper following the same structure used in the classification method. Furthermore, we discuss several design considerations, challenges, and future directions of non-invasive control interfaces for active movement-assistive devices.

134 citations

Journal ArticleDOI
TL;DR: In this paper, two new performance metrics have been defined to quantify the capability to achieve stable grasp equilibrium of a range of freely moving objects (ability to grasp), and the ability to keep hold of the grasped objects while disturbing forces are applied.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the major efforts and findings documented in the literature can be found in this article, where a common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistably energy harvesters are described, and some remaining challenges and proposed solutions are summarized.
Abstract: The investigation of the conversion of vibrational energy into electrical power has become a major field of research. In recent years, bistable energy harvesting devices have attracted significant attention due to some of their unique features. Through a snap-through action, bistable systems transition from one stable state to the other, which could cause large amplitude motion and dramatically increase power generation. Due to their nonlinear characteristics, such devices may be effective across a broad-frequency bandwidth. Consequently, a rapid engagement of research has been undertaken to understand bistable electromechanical dynamics and to utilize the insight for the development of improved designs. This paper reviews, consolidates, and reports on the major efforts and findings documented in the literature. A common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistable energy harvesters are described, and some remaining challenges and proposed solutions are summarized.

1,158 citations

Book
01 Aug 1996
TL;DR: Fuzzy sets as mentioned in this paper are a class of classes in which there may be grades of membership intermediate between full membership and non-membership, i.e., a fuzzy set is characterized by a membership function which assigns to each object its grade of membership.
Abstract: The notion of fuzziness as defined in this paper relates to situations in which the source of imprecision is not a random variable or a stochastic process, but rather a class or classes which do not possess sharply defined boundaries, e.g., the “class of bald men,” or the “class of numbers which are much greater than 10,” or the “class of adaptive systems,” etc. A basic concept which makes it possible to treat fuzziness in a quantitative manner is that of a fuzzy set, that is, a class in which there may be grades of membership intermediate between full membership and non-membership. Thus, a fuzzy set is characterized by a membership function which assigns to each object its grade of membership (a number lying between 0 and 1) in the fuzzy set. After a review of some of the relevant properties of fuzzy sets, the notions of a fuzzy system and a fuzzy class of systems are introduced and briefly analyzed. The paper closes with a section dealing with optimization under fuzzy constraints in which an approach to...

885 citations

Journal ArticleDOI
TL;DR: A detailed overview of the energy harvesting technologies associated with piezoelectric materials along with the closely related sub-classes of pyroelectrics and ferro-electrics can be found in this article.
Abstract: This review provides a detailed overview of the energy harvesting technologies associated with piezoelectric materials along with the closely related sub-classes of pyroelectrics and ferroelectrics. These properties are, in many cases, present in the same material, providing the intriguing prospect of a material that can harvest energy from multiple sources including vibration, thermal fluctuations and light. Piezoelectric materials are initially discussed in the context of harvesting mechanical energy from vibrations using inertial energy harvesting, which relies on the resistance of a mass to acceleration, and kinematic energy harvesting which directly couples the energy harvester to the relative movement of different parts of a source. Issues related to mode of operation, loss mechanisms and using non-linearity to enhance the operating frequency range are described along with the potential materials that could be employed for harvesting vibrations at elevated temperatures. In addition to inorganic piezoelectric materials, compliant piezoelectric materials are also discussed. Piezoelectric energy harvesting devices are complex multi-physics systems requiring advanced methodologies to maximise their performance. The research effort to develop optimisation methods for complex piezoelectric energy harvesters is then reviewed. The use of ferroelectric or multi-ferroic materials to convert light into chemical or electrical energy is then described in applications where the internal electric field can prevent electron–hole recombination or enhance chemical reactions at the ferroelectric surface. Finally, pyroelectric harvesting generates power from temperature fluctuations and this review covers the modes of pyroelectric harvesting such as simple resistive loading and Olsen cycles. Nano-scale pyroelectric systems and novel micro-electro-mechanical-systems designed to increase the operating frequency are discussed.

882 citations

Journal ArticleDOI
18 Apr 2018-Joule
TL;DR: A comprehensive review of piezoelectric energy-harvesting techniques developed in the last decade is presented, identifying four promising applications: shoes, pacemakers, tire pressure monitoring systems, and bridge and building monitoring.

720 citations

Proceedings ArticleDOI
27 Jul 2015
TL;DR: The Yale-CMU-Berkeley (YCB) Object and Model set is intended to be used for benchmarking in robotic grasping and manipulation research, and provides high-resolution RGBD scans, physical properties and geometric models of the objects for easy incorporation into manipulation and planning software platforms.
Abstract: In this paper we present the Yale-CMU-Berkeley (YCB) Object and Model set, intended to be used for benchmarking in robotic grasping and manipulation research. The objects in the set are designed to cover various aspects of the manipulation problem; it includes objects of daily life with different shapes, sizes, textures, weight and rigidity, as well as some widely used manipulation tests. The associated database provides high-resolution RGBD scans, physical properties and geometric models of the objects for easy incorporation into manipulation and planning software platforms. A comprehensive literature survey on existing benchmarks and object datasets is also presented and their scope and limitations are discussed. The set will be freely distributed to research groups worldwide at a series of tutorials at robotics conferences, and will be otherwise available at a reasonable purchase cost.

619 citations