scispace - formally typeset
Search or ask a question
Author

Justin Hanes

Bio: Justin Hanes is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Drug delivery & Mucus. The author has an hindex of 75, co-authored 288 publications receiving 23760 citations. Previous affiliations of Justin Hanes include Massachusetts Institute of Technology & University of Alberta.


Papers
More filters
Journal ArticleDOI
TL;DR: The history of the development of PEGylated nanoparticle formulations for systemic administration is described, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time.

2,465 citations

Journal ArticleDOI
TL;DR: The tenacious mucus barrier properties that have precluded the efficient penetration of therapeutic particles are described and the design and development of new mucus-penetrating particles that may avoid rapid mucus clearance mechanisms are reviewed to provide targeted or sustained drug delivery for localized therapies in mucosal tissues.

1,538 citations

Journal ArticleDOI
TL;DR: The protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier are addressed.

1,205 citations

Journal ArticleDOI
20 Jun 1997-Science
TL;DR: A new type of inhalation aerosol, characterized by particles of small mass density and large size, permitted the highly efficient delivery of inhaled therapeutics into the systemic circulation.
Abstract: A new type of inhalation aerosol, characterized by particles of small mass density and large size, permitted the highly efficient delivery of inhaled therapeutics into the systemic circulation. Particles with mass densities less than 0.4 gram per cubic centimeter and mean diameters exceeding 5 micrometers were inspired deep into the lungs and escaped the lungs' natural clearance mechanisms until the inhaled particles delivered their therapeutic payload. Inhalation of large porous insulin particles resulted in elevated systemic levels of insulin and suppressed systemic glucose levels for 96 hours, whereas small nonporous insulin particles had this effect for only 4 hours. High systemic bioavailability of testosterone was also achieved by inhalation delivery of porous particles with a mean diameter (20 micrometers) approximately 10 times that of conventional inhaled therapeutic particles.

1,179 citations

Journal ArticleDOI
TL;DR: It is demonstrated that large nanoparticles, if properly coated, can rapidly penetrate physiological human mucus, and they offer the prospect thatLarge nanoparticles can be used for mucosal drug delivery.
Abstract: Nanoparticles larger than the reported mesh-pore size range (10–200 nm) in mucus have been thought to be much too large to undergo rapid diffusional transport through mucus barriers. However, large nanoparticles are preferred for higher drug encapsulation efficiency and the ability to provide sustained delivery of a wider array of drugs. We used high-speed multiple-particle tracking to quantify transport rates of individual polymeric particles of various sizes and surface chemistries in samples of fresh human cervicovaginal mucus. Both the mucin concentration and viscoelastic properties of these cervicovaginal samples are similar to those in many other human mucus secretions. Unexpectedly, we found that large nanoparticles, 500 and 200 nm in diameter, if coated with polyethylene glycol, diffused through mucus with an effective diffusion coefficient (Deff) only 4- and 6-fold lower than that for the same particles in water (at time scale τ = 1 s). In contrast, for smaller but otherwise identical 100-nm coated particles, Deff was 200-fold lower in mucus than in water. For uncoated particles 100–500 nm in diameter, Deff was 2,400- to 40,000-fold lower in mucus than in water. Much larger fractions of the 100-nm particles were immobilized or otherwise hindered by mucus than the large 200- to 500-nm particles. Thus, in contrast to the prevailing belief, these results demonstrate that large nanoparticles, if properly coated, can rapidly penetrate physiological human mucus, and they offer the prospect that large nanoparticles can be used for mucosal drug delivery.

964 citations


Cited by
More filters
Journal Article
TL;DR: The surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition, are explored and the rational approaches in the design as well as the biological performance of such constructs are assessed.
Abstract: The rapid recognition of intravenously injected colloidal carriers, such as liposomes and polymeric nanospheres from the blood by Kupffer cells, has initiated a surge of development for "Kupffer cell-evading" or long-circulating particles. Such carriers have applications in vascular drug delivery and release, site-specific targeting (passive as well as active targeting), as well as transfusion medicine. In this article we have critically reviewed and assessed the rational approaches in the design as well as the biological performance of such constructs. For engineering and design of long-circulating carriers, we have taken a lead from nature. Here, we have explored the surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition. Our analysis is then centered where such strategies have been translated and fabricated to design a wide range of particulate carriers (e.g., nanospheres, liposomes, micelles, oil-in-water emulsions) with prolonged circulation and/or target specificity. With regard to the targeting issues, attention is particularly focused on the importance of physiological barriers and disease states.

3,413 citations

Journal ArticleDOI
TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Abstract: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?’

3,335 citations

Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Journal ArticleDOI
TL;DR: The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of the kinds of bacterial communities normally found in healthy women and the need to appreciate differences between individuals so they can be taken into account in risk assessment and disease diagnosis.
Abstract: The means by which vaginal microbiomes help prevent urogenital diseases in women and maintain health are poorly understood. To gain insight into this, the vaginal bacterial communities of 396 asymptomatic North American women who represented four ethnic groups (white, black, Hispanic, and Asian) were sampled and the species composition characterized by pyrosequencing of barcoded 16S rRNA genes. The communities clustered into five groups: four were dominated by Lactobacillus iners, L. crispatus, L. gasseri, or L. jensenii, whereas the fifth had lower proportions of lactic acid bacteria and higher proportions of strictly anaerobic organisms, indicating that a potential key ecological function, the production of lactic acid, seems to be conserved in all communities. The proportions of each community group varied among the four ethnic groups, and these differences were statistically significant [χ(2)(10) = 36.8, P < 0.0001]. Moreover, the vaginal pH of women in different ethnic groups also differed and was higher in Hispanic (pH 5.0 ± 0.59) and black (pH 4.7 ± 1.04) women as compared with Asian (pH 4.4 ± 0.59) and white (pH 4.2 ± 0.3) women. Phylotypes with correlated relative abundances were found in all communities, and these patterns were associated with either high or low Nugent scores, which are used as a factor for the diagnosis of bacterial vaginosis. The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of the kinds of bacterial communities normally found in healthy women and the need to appreciate differences between individuals so they can be taken into account in risk assessment and disease diagnosis.

2,848 citations

01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations