scispace - formally typeset
J

Justin Romberg

Researcher at Georgia Institute of Technology

Publications -  245
Citations -  39597

Justin Romberg is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Compressed sensing & Convex optimization. The author has an hindex of 40, co-authored 226 publications receiving 36453 citations. Previous affiliations of Justin Romberg include Weizmann Institute of Science & California Institute of Technology.

Papers
More filters
Journal ArticleDOI

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Journal ArticleDOI

Stable signal recovery from incomplete and inaccurate measurements

TL;DR: In this paper, the authors considered the problem of recovering a vector x ∈ R^m from incomplete and contaminated observations y = Ax ∈ e + e, where e is an error term.
Posted Content

Stable Signal Recovery from Incomplete and Inaccurate Measurements

TL;DR: It is shown that it is possible to recover x0 accurately based on the data y from incomplete and contaminated observations.
Journal ArticleDOI

Sparsity and incoherence in compressive sampling

TL;DR: It is shown that ‘1 minimization recovers x 0 exactly when the number of measurements exceeds m Const ·µ 2 (U) ·S · logn, where S is the numberof nonzero components in x 0, and µ is the largest entry in U properly normalized: µ(U) = p n · maxk,j |Uk,j|.
Journal ArticleDOI

Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals

TL;DR: A new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components that supports the empirical observations, and a detailed theoretical analysis of the system's performance is provided.