scispace - formally typeset
Search or ask a question
Author

Justin S. Brashares

Bio: Justin S. Brashares is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Population & Wildlife. The author has an hindex of 41, co-authored 95 publications receiving 10895 citations. Previous affiliations of Justin S. Brashares include University of British Columbia & University of Cambridge.


Papers
More filters
Journal ArticleDOI
15 Jul 2011-Science
TL;DR: This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles.
Abstract: Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.

3,130 citations

Journal ArticleDOI
TL;DR: An overview of mesopredator release is presented and its underlying concepts can be used to improve predator management in an increasingly fragmented world and it is shown that 60% of mesOPredator ranges have expanded, whereas all apex predator ranges have contracted.
Abstract: Apex predators have experienced catastrophic declines throughout the world as a result of human persecution and habitat loss. These collapses in top predator populations are commonly associated with dramatic increases in the abundance of smaller predators. Known as “mesopredator release,” this trophic interaction has been recorded across a range of communities and ecosystems. Mesopredator outbreaks often lead to declining prey populations, sometimes destabilizing communities and driving local extinctions. We present an overview of mesopredator release and illustrate how its underlying concepts can be used to improve predator management in an increasingly fragmented world. We also examine shifts in North American carnivore ranges during the past 200 years and show that 60% of mesopredator ranges have expanded, whereas all apex predator ranges have contracted. The need to understand how best to predict and manage mesopredator release is urgent—mesopredator outbreaks are causing high ecological, economic, an...

733 citations

Journal ArticleDOI
18 Sep 2003-Nature
TL;DR: Biodiversity allows both predation (top-down) and resource limitation (bottom-up) to act simultaneously to affect herbivore populations.
Abstract: There are many cases where animal populations are affected by predators and resources in terrestrial ecosystems1,2,3, but the factors that determine when one or the other predominates remain poorly understood4,5. Here we show, using 40 years of data from the highly diverse mammal community of the Serengeti ecosystem, East Africa, that the primary cause of mortality for adults of a particular species is determined by two factors—the species diversity of both the predators and prey and the body size of that prey species relative to other prey and predators. Small ungulates in Serengeti are exposed to more predators, owing to opportunistic predation, than are larger ungulates; they also suffer greater predation rates, and experience strong predation pressure. A threshold occurs at prey body sizes of ∼150 kg, above which ungulate species have few natural predators and exhibit food limitation. Thus, biodiversity allows both predation (top-down) and resource limitation (bottom-up) to act simultaneously to affect herbivore populations. This result may apply generally in systems where there is a diversity of predators and prey.

698 citations

Journal ArticleDOI
TL;DR: The results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored and improving matrix quality may lead to higher conservation returns.
Abstract: Habitat destruction has driven many once-contiguous animal populations into remnant patches of varying size and isolation. The underlying framework for the conservation of fragmented populations is founded on the principles of island biogeography, wherein the probability of species occurrence in habitat patches varies as a function of patch size and isolation. Despite decades of research, the general importance of patch area and isolation as predictors of species occupancy in fragmented terrestrial systems remains unknown because of a lack of quantitative synthesis. Here, we compile occupancy data from 1,015 bird, mammal, reptile, amphibian, and invertebrate population networks on 6 continents and show that patch area and isolation are surprisingly poor predictors of occupancy for most species. We examine factors such as improper scaling and biases in species representation as explanations and find that the type of land cover separating patches most strongly affects the sensitivity of species to patch area and isolation. Our results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored. Improving matrix quality may lead to higher conservation returns than manipulating the size and configuration of remnant patches for many of the species that persist in the aftermath of habitat destruction.

682 citations

Journal ArticleDOI
04 Jul 2008-Science
TL;DR: It is found that average human population growth rates on the borders of 306 PAs in 45 countries in Africa and Latin America were nearly double average rural growth, suggesting that PAs attract, rather than repel, human settlement.
Abstract: Protected areas (PAs) have long been criticized as creations of and for an elite few, where associated costs, but few benefits, are borne by marginalized rural communities. Contrary to predictions of this argument, we found that average human population growth rates on the borders of 306 PAs in 45 countries in Africa and Latin America were nearly double average rural growth, suggesting that PAs attract, rather than repel, human settlement. Higher population growth on PA edges is evident across ecoregions, countries, and continents and is correlated positively with international donor investment in national conservation programs and an index of park-related funding. These findings provide insight on the value of PAs for local people, but also highlight a looming threat to PA effectiveness and biodiversity conservation.

628 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: It is argued that human actions are dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate, and the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper is asked.
Abstract: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

5,244 citations

Journal ArticleDOI
TL;DR: Analysis of variance of log K for all 121 traits indicated that behavioral traits exhibit lower signal than body size, morphological, life-history, or physiological traits, and this work presents new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models.
Abstract: The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal α = 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch-length transformat...

3,896 citations