scispace - formally typeset
Search or ask a question
Author

Jutta Thielen

Bio: Jutta Thielen is an academic researcher from European Union. The author has contributed to research in topics: Flood forecasting & Flood alert. The author has an hindex of 26, co-authored 52 publications receiving 3105 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The European Flood Alert System (EFAS) as discussed by the authors aims at increasing preparedness for floods in transnational European river basins by providing local water authorities with medium-range and probabilistic flood forecasting information 3 to 10 days in advance.
Abstract: . This paper presents the development of the European Flood Alert System (EFAS), which aims at increasing preparedness for floods in trans-national European river basins by providing local water authorities with medium-range and probabilistic flood forecasting information 3 to 10 days in advance. The EFAS research project started in 2003 with the development of a prototype at the European Commission Joint Research Centre (JRC), in close collaboration with the national hydrological and meteorological services. The prototype covers the whole of Europe on a 5 km grid. In parallel, different high-resolution data sets have been collected for the Elbe and Danube river basins, allowing the potential of the system under optimum conditions and on a higher resolution to be assessed. Flood warning lead-times of 3–10 days are achieved through the incorporation of medium-range weather forecasts from the German Weather Service (DWD) and the European Centre for Medium-Range Weather Forecasts (ECMWF), comprising a full set of 51 probabilistic forecasts from the Ensemble Prediction System (EPS) provided by ECMWF. The ensemble of different hydrographs is analysed and combined to produce early flood warning information, which is disseminated to the hydrological services that have agreed to participate in the development of the system. In Part 1 of this paper, the scientific approach adopted in the development of the system is presented. The rational of the project, the system�s set-up, its underlying components, basic principles and products are described. In Part 2, results of a detailed statistical analysis of the performance of the system are shown, with regard to both probabilistic and deterministic forecasts.

443 citations

Journal ArticleDOI
TL;DR: The Global Flood Awareness System (GloFAS) as mentioned in this paper is based on distributed hydrological simulation of numerical ensemble weather predictions with global coverage, where streamflow forecasts are compared statistically to climatological simulations to detect probabilistic exceedance of warning thresholds.
Abstract: . Anticipation and preparedness for large-scale flood events have a key role in mitigating their impact and optimizing the strategic planning of water resources. Although several developed countries have well-established systems for river monitoring and flood early warning, figures of populations affected every year by floods in developing countries are unsettling. This paper presents the Global Flood Awareness System (GloFAS), which has been set up to provide an overview on upcoming floods in large world river basins. GloFAS is based on distributed hydrological simulation of numerical ensemble weather predictions with global coverage. Streamflow forecasts are compared statistically to climatological simulations to detect probabilistic exceedance of warning thresholds. In this article, the system setup is described, together with an evaluation of its performance over a two-year test period and a qualitative analysis of a case study for the Pakistan flood, in summer 2010. It is shown that hazardous events in large river basins can be skilfully detected with a forecast horizon of up to 1 month. In addition, results suggest that an accurate simulation of initial model conditions and an improved parameterization of the hydrological model are key components to reproduce accurately the streamflow variability in the many different runoff regimes of the earth.

400 citations

Journal ArticleDOI
TL;DR: Two years of existing operational EFAS forecasts are statistically assessed and the skill ofEFAS forecasts is analysed with several skill scores, which shows the benefit of incorporating past forecasts in the probability analysis, for medium-range forecasts, which effectively increases theskill of the forecasts.
Abstract: . Since 2005 the European Flood Alert System (EFAS) has been producing probabilistic hydrological forecasts in pre-operational mode at the Joint Research Centre (JRC) of the European Commission. EFAS aims at increasing preparedness for floods in trans-national European river basins by providing medium-range deterministic and probabilistic flood forecasting information, from 3 to 10 days in advance, to national hydro-meteorological services. This paper is Part 2 of a study presenting the development and skill assessment of EFAS. In Part 1, the scientific approach adopted in the development of the system has been presented, as well as its basic principles and forecast products. In the present article, two years of existing operational EFAS forecasts are statistically assessed and the skill of EFAS forecasts is analysed with several skill scores. The analysis is based on the comparison of threshold exceedances between proxy-observed and forecasted discharges. Skill is assessed both with and without taking into account the persistence of the forecasted signal during consecutive forecasts. Skill assessment approaches are mostly adopted from meteorology and the analysis also compares probabilistic and deterministic aspects of EFAS. Furthermore, the utility of different skill scores is discussed and their strengths and shortcomings illustrated. The analysis shows the benefit of incorporating past forecasts in the probability analysis, for medium-range forecasts, which effectively increases the skill of the forecasts.

220 citations

Journal ArticleDOI
TL;DR: In this paper, a review of current European operational warning systems for water-related hazards induced by severe weather conditions is presented, which includes systems for detecting surface water flooding, flash floods, debris flows, mud flows, rainfall-induced landslides, river floods and coastal floods.

219 citations

Journal ArticleDOI
TL;DR: In this article, a European Flood Forecasting System (EFFS) was developed to determine what flood forecast skill can be achieved for given basins, meteorological events and prediction products, and the output from the system is a probabilistic assessment of n−day ahead discharge exceedence risk (where n < 10) for the whole of Europe at 5 km resolution which may then be updated as the forecast lead time reduces.
Abstract: Recent advances in meteorological forecast skill now enable significantly improved estimates of precipitation quantity, timing and spatial distribution to be made up to 10 days ahead for model scales of 40 km in forecast mode. Here we outline a prototype methodology to downscale these precipitation estimates using regional Numerical Weather Prediction models to spatial scales appropriate to hydrological forecasting and then use these to drive high‐resolution scale (1 or 5 km grid scale) water balance and rainfall‐runoff models. The aim is to develop a European Flood Forecasting System (EFFS) and determine what flood forecast skill can be achieved for given basins, meteorological events and prediction products. The output from the system is a probabilistic assessment of n‐day ahead discharge exceedence risk (where n < 10) for the whole of Europe at 5 km resolution which may then be updated as the forecast lead time reduces. At each stage the discharge estimates can be used to drive detailed (25–10...

209 citations


Cited by
More filters
Journal ArticleDOI
03 Sep 2015-Nature
TL;DR: As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.
Abstract: Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

1,475 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review of statistical methods for landslide susceptibility modelling and associated terrain zonations is presented, revealing a significant heterogeneity of thematic data types and scales, modelling approaches, and model evaluation criteria.

957 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the scientific drivers of this shift towards ensemble flood forecasting and discuss several of the questions surrounding best practice in using ensemble prediction systems in flood forecasting systems.

865 citations

Journal ArticleDOI
TL;DR: A review of state-of-the-art empirical, hydrodynamic and simple conceptual models for determining flood inundation is presented in this paper, where guidance is provided for selecting the most suitable method/model for solving practical flood related problems, taking into account the specific outputs required for the modelling purpose, the data available and computational demands.
Abstract: This paper reviews state-of-the-art empirical, hydrodynamic and simple conceptual models for determining flood inundation. It explores their advantages and limitations, highlights the most recent advances and discusses future directions. It addresses how uncertainty is analysed in this field with the various approaches and identifies opportunities for handling it better. The aim is to inform scientists new to the field, and help emergency response agencies, water resources managers, insurance companies and other decision makers keep up-to-date with the latest developments. Guidance is provided for selecting the most suitable method/model for solving practical flood related problems, taking into account the specific outputs required for the modelling purpose, the data available and computational demands. Multi-model, multi-discipline approaches are recommended in order to further advance this research field. This paper reviews state-of-the-art flood inundation models.It explores their advantages and limitations.It highlights the most recent advances and discusses future directions.It addresses how uncertainty is analysed and identifies opportunities for handling it better.

694 citations