scispace - formally typeset
Search or ask a question
Author

Juwei Lu

Bio: Juwei Lu is an academic researcher from University of Toronto. The author has contributed to research in topics: Facial recognition system & Linear discriminant analysis. The author has an hindex of 17, co-authored 29 publications receiving 3662 citations. Previous affiliations of Juwei Lu include Nanyang Technological University.

Papers
More filters
Journal ArticleDOI
TL;DR: A new algorithm is proposed that deals with both of the shortcomings in an efficient and cost effective manner of traditional linear discriminant analysis methods for face recognition systems.
Abstract: Low-dimensional feature representation with enhanced discriminatory power is of paramount importance to face recognition (FR) systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the "small sample size" (SSS) problem which is often encountered in FR tasks. In this paper, we propose a new algorithm that deals with both of the shortcomings in an efficient and cost effective manner. The proposed method is compared, in terms of classification accuracy, to other commonly used FR methods on two face databases. Results indicate that the performance of the proposed method is overall superior to those of traditional FR approaches, such as the eigenfaces, fisherfaces, and D-LDA methods.

811 citations

Journal ArticleDOI
TL;DR: A novel paradigm is proposed whereby data information is encapsulated in determining the structure and initial parameters of the RBF neural classifier before learning takes place, and the dimension of the search space is drastically reduced in the gradient paradigm.
Abstract: A general and efficient design approach using a radial basis function (RBF) neural classifier to cope with small training sets of high dimension, which is a problem frequently encountered in face recognition, is presented. In order to avoid overfitting and reduce the computational burden, face features are first extracted by the principal component analysis (PCA) method. Then, the resulting features are further processed by the Fisher's linear discriminant (FLD) technique to acquire lower-dimensional discriminant patterns. A novel paradigm is proposed whereby data information is encapsulated in determining the structure and initial parameters of the RBF neural classifier before learning takes place. A hybrid learning algorithm is used to train the RBF neural networks so that the dimension of the search space is drastically reduced in the gradient paradigm. Simulation results conducted on the ORL database show that the system achieves excellent performance both in terms of error rates of classification and learning efficiency.

656 citations

Journal ArticleDOI
TL;DR: This paper proposes a kernel machine-based discriminant analysis method, which deals with the nonlinearity of the face patterns' distribution and effectively solves the so-called "small sample size" (SSS) problem, which exists in most FR tasks.
Abstract: Techniques that can introduce low-dimensional feature representation with enhanced discriminatory power is of paramount importance in face recognition (FR) systems. It is well known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. It is, therefore, not surprising that linear techniques, such as those based on principle component analysis (PCA) or linear discriminant analysis (LDA), cannot provide reliable and robust solutions to those FR problems with complex face variations. In this paper, we propose a kernel machine-based discriminant analysis method, which deals with the nonlinearity of the face patterns' distribution. The proposed method also effectively solves the so-called "small sample size" (SSS) problem, which exists in most FR tasks. The new algorithm has been tested, in terms of classification error rate performance, on the multiview UMIST face database. Results indicate that the proposed methodology is able to achieve excellent performance with only a very small set of features being used, and its error rate is approximately 34% and 48% of those of two other commonly used kernel FR approaches, the kernel-PCA (KPCA) and the generalized discriminant analysis (GDA), respectively.

651 citations

Journal ArticleDOI
TL;DR: A novel classification method, called the nearest feature line (NFL), for face recognition, based on the nearest distance from the query feature point to each FL, which achieves the lowest error rate reported for the ORL face database.
Abstract: We propose a classification method, called the nearest feature line (NFL), for face recognition. Any two feature points of the same class (person) are generalized by the feature line (FL) passing through the two points. The derived FL can capture more variations of face images than the original points and thus expands the capacity of the available database. The classification is based on the nearest distance from the query feature point to each FL. With a combined face database, the NFL error rate is about 43.7-65.4% of that of the standard eigenface method. Moreover, the NFL achieves the lowest error rate reported to date for the ORL face database.

555 citations

Journal ArticleDOI
TL;DR: A new LDA method is proposed that attempts to address the SSS problem using a regularized Fisher's separability criterion and a scheme of expanding the representational capacity of face database is introduced to overcome the limitation that the LDA-based algorithms require at least two samples per class available for learning.

322 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

Journal ArticleDOI
TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.
Abstract: We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render (or synthesize) images of the face under novel poses and illumination conditions. The pose space is then sampled and, for each pose, the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone. Test results show that the method performs almost without error, except on the most extreme lighting directions.

5,027 citations

Journal ArticleDOI
TL;DR: A new method that is close to the support vector machines insofar as the GDA method provides a mapping of the input vectors into high-dimensional feature space to deal with nonlinear discriminant analysis using kernel function operator.
Abstract: We present a new method that we call generalized discriminant analysis (GDA) to deal with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the support vector machines (SVM) insofar as the GDA method provides a mapping of the input vectors into high-dimensional feature space. In the transformed space, linear properties make it easy to extend and generalize the classical linear discriminant analysis (LDA) to nonlinear discriminant analysis. The formulation is expressed as an eigenvalue problem resolution. Using a different kernel, one can cover a wide class of nonlinearities. For both simulated data and alternate kernels, we give classification results, as well as the shape of the decision function. The results are confirmed using real data to perform seed classification.

1,743 citations