scispace - formally typeset
Search or ask a question
Author

Jyan-Chyun Jang

Other affiliations: Harvard University
Bio: Jyan-Chyun Jang is an academic researcher from Ohio State University. The author has contributed to research in topics: Zinc finger & Arabidopsis. The author has an hindex of 21, co-authored 32 publications receiving 4752 citations. Previous affiliations of Jyan-Chyun Jang include Harvard University.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that the first enzyme in the hexose assimilation pathway, hexokinase (HXK), acts as a sensor for plant sugar responses, suggesting that HXK is a dual-function enzyme with a distinct regulatory function not interchangeable between plants and yeast.
Abstract: The mechanisms by which higher plants recognize and respond to sugars are largely unknown. Here, we present evidence that the first enzyme in the hexose assimilation pathway, hexokinase (HXK), acts as a sensor for plant sugar responses. Transgenic Arabidopsis plants expressing antisense hexokinase (AtHXK) genes are sugar hyposensitive, whereas plants overexpressing AtHXK are sugar hypersensitive. The transgenic plants exhibited a wide spectrum of altered sugar responses in seedling development and in gene activation and repression. Furthermore, overexpressing the yeast sugar sensor YHXK2 caused a dominant negative effect by elevating HXK catalytic activity but reducing sugar sensitivity in transgenic plants. The result suggests that HXK is a dual-function enzyme with a distinct regulatory function not interchangeable between plants and yeast.

874 citations

Journal ArticleDOI
TL;DR: It is proposed that hexokinase may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants and the involvement of glycolysis and other metabolic pathways is eliminated.
Abstract: Sugar repression of photosynthetic genes is likely a central control mechanism mediating energy homeostasis in a wide range of algae and higher plants. It overrides light activation and is coupled to developmental and environmental regulations. How sugar signals are sensed and transduced to the nucleus remains unclear. To elucidate sugar-sensing mechanisms, we monitored the effects of a variety of sugars, glucose analogs, and metabolic intermediates on photosynthetic fusion genes in a sensitive and versatile maize protoplast transient expression system. The results show that sugars that are the substrates of hexokinase (HK) cause repression at a low concentration (1 to 10 mM), indicating a low degree of specificity and the irrelevance of osmotic change. Studies with various glucose analogs suggest that glucose transport across the plasma membrane is necessary but not sufficient to trigger repression, whereas subsequent phosphorylation by HK may be required. The effectiveness of 2-deoxyglucose, a nonmetabolizable glucose analog, and the ineffectiveness of various metabolic intermediates in eliciting repression eliminate the involvement of glycolysis and other metabolic pathways. Replenishing intracellular phosphate and ATP diminished by hexoses does not overcome repression. Because mannoheptulose, a specific HK inhibitor, blocks the severe repression triggered by 2-deoxyglucose and yet the phosphorylated products per se do not act as repression signals, we propose that HK may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants.

693 citations

Journal ArticleDOI
TL;DR: Global expression data strongly support the idea that glucose and inorganic nitrogen act as both metabolites and signaling molecules in plants, suggesting that de novo protein synthesis is an intermediary event required before most glucose induction can occur.
Abstract: Complex and interconnected signaling networks allow organisms to control cell division, growth, differentiation, or programmed cell death in response to metabolic and environmental cues. In plants, it is known that sugar and nitrogen are critical nutrient signals; however, our understanding of the molecular mechanisms underlying nutrient signal transduction is very limited. To begin unraveling complex sugar signaling networks in plants, DNA microarray analysis was used to determine the effects of glucose and inorganic nitrogen source on gene expression on a global scale in Arabidopsis thaliana. In whole seedling tissue, glucose is a more potent signal in regulating transcription than inorganic nitrogen. In fact, other than genes associated with nitrate assimilation, glucose had a greater effect in regulating nitrogen metabolic genes than nitrogen itself. Glucose also regulated a broader range of genes, including genes associated with carbohydrate metabolism, signal transduction, and metabolite transport. In addition, a large number of stress responsive genes were also induced by glucose, indicating a role of sugar in environmental responses. Cluster analysis revealed significant interaction between glucose and nitrogen in regulating gene expression because glucose can modulate the effects of nitrogen and vise versa. Intriguingly, cycloheximide treatment appeared to disrupt glucose induction more than glucose repression, suggesting that de novo protein synthesis is an intermediary event required before most glucose induction can occur. Cross talk between sugar and ethylene signaling may take place on the transcriptional level because several ethylene biosynthetic and signal transduction genes are repressed by glucose, and the repression is largely unaffected by cycloheximide. Collectively, our global expression data strongly support the idea that glucose and inorganic nitrogen act as both metabolites and signaling molecules.

556 citations

Journal ArticleDOI
TL;DR: It is proposed that HK may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants and the involvement of glycolysis and other metabolic pathways.

526 citations

Journal ArticleDOI
TL;DR: The isolation and characterization of gin1 reveal an unexpected convergence between the glucose and the ethylene signal transduction pathways, and GIN1 may function to balance the control of plant development in response to metabolic and hormonal stimuli that act antagonistically.
Abstract: Glucose is an essential signaling molecule that controls plant development and gene expression through largely unknown mechanisms. To initiate the dissection of the glucose signal transduction pathway in plants by using a genetic approach, we have identified an Arabidopsis mutant, gin1 (glucose-insensitive), in which glucose repression of cotyledon greening and expansion, shoot development, floral transition, and gene expression is impaired. Genetic analysis indicates that GIN1 acts downstream of the sensor hexokinase in the glucose signaling pathway. Surprisingly, gin1 insensitivity to glucose repression of cotyledon and shoot development is phenocopied by ethylene precursor treatment of wild-type plants or by constitutive ethylene biosynthesis and constitutive ethylene signaling mutants. In contrast, the ethylene insensitive mutant etr1-1 exhibits glucose hypersensitivity. Epistasis analysis places GIN1 downstream of the ethylene receptor, ETR1, and defines a new branch of ethylene signaling pathway that is uncoupled from the triple response induced by ethylene. The isolation and characterization of gin1 reveal an unexpected convergence between the glucose and the ethylene signal transduction pathways. GIN1 may function to balance the control of plant development in response to metabolic and hormonal stimuli that act antagonistically.

503 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 2000
TL;DR: Evidence for plant stress signaling systems is summarized, some of which have components analogous to those that regulate osmotic stress responses of yeast, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants.
Abstract: ▪ Abstract Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to t...

4,596 citations

Journal ArticleDOI
TL;DR: Various factors pertaining to cold acclimation, promoter elements, and role of transcription factors in stress signaling pathway have been described, and the role of calcium as an important signaling molecule in response to various stress signals has been covered.

2,626 citations

Journal ArticleDOI
TL;DR: In this article, the experimental amenability of yeast as a unicellular model system has enabled the discovery of multiple sugar sensors and signaling pathways, and a central role for hexokinase (HXK) as conserved glucose sensor.
Abstract: Sugars not only fuel cellular carbon and energy metabolism but also play pivotal roles as signaling molecules. The experimental amenability of yeast as a unicellular model system has enabled the discovery of multiple sugar sensors and signaling pathways. In plants, different sugar signals are generated by photosynthesis and carbon metabolism in source and sink tissues to modulate growth, development, and stress responses. Genetic analyses have revealed extensive interactions between sugar and plant hormone signaling, and a central role for hexokinase (HXK) as a conserved glucose sensor. Diverse sugar signals activate multiple HXK-dependent and HXKindependent pathways and use different molecular mechanisms to control transcription, translation, protein stability and enzymatic activity. Important and complex roles for Snf1-related kinases (SnRKs), extracellular sugar sensors, and trehalose metabolism in plant sugar signaling are now also emerging.

1,983 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: The primary effect of plants response of plants to rising atmospheric CO2 (Ca) is to increase resource use efficiency, and at the same time it stimulates higher rates of photosynthesis and increases light-use efficiency as discussed by the authors.
Abstract: ▪ Abstract The primary effect of the response of plants to rising atmospheric CO2 (Ca) is to increase resource use efficiency. Elevated Ca reduces stomatal conductance and transpiration and improves water use efficiency, and at the same time it stimulates higher rates of photosynthesis and increases light-use efficiency. Acclimation of photosynthesis during long-term exposure to elevated Ca reduces key enzymes of the photosynthetic carbon reduction cycle, and this increases nutrient use efficiency. Improved soil–water balance, increased carbon uptake in the shade, greater carbon to nitrogen ratio, and reduced nutrient quality for insect and animal grazers are all possibilities that have been observed in field studies of the effects of elevated Ca. These effects have major consequences for agriculture and native ecosystems in a world of rising atmospheric Ca and climate change.

1,906 citations

Journal ArticleDOI
TL;DR: Differences among species that can be traced to different capacities for water acquisition, rather than to differences in metabolism at a given water status, are described.

1,838 citations