scispace - formally typeset
Search or ask a question
Author

Jyh-Ping Hsu

Bio: Jyh-Ping Hsu is an academic researcher from National Taiwan University. The author has contributed to research in topics: Particle & Electrophoresis. The author has an hindex of 34, co-authored 373 publications receiving 5314 citations. Previous affiliations of Jyh-Ping Hsu include National Ilan University & National Taiwan University of Science and Technology.


Papers
More filters
Journal ArticleDOI
01 Apr 2018-Carbon
TL;DR: In this paper, a facile sensor based on two-dimensional (2D) g-C3N4/CuO nanocomposites was proposed for electrochemical detection of dopamine (DA).

192 citations

Journal ArticleDOI
TL;DR: A soybean oil-in-water emulsion was prepared using nonionic Tween series surfactants and zeta potential appears to be strongly dependent on pH, varying in the case of high concentrations of NaCl from +60 to -90 mV.

181 citations

Journal ArticleDOI
01 Oct 2013
TL;DR: It is concluded that the zeta potential measurements for the tested NPs are reliable only if their concentration exceeds a certain level, and this also applies to other metal oxides or hydroxides, the surface of which reacts appreciably with dissolved CO2.
Abstract: In an attempt to estimate the zeta potential of various metal oxide nanoparticles (NPs) dispersed in water, it is interesting to observe that both the magnitude and the sign of this property depend highly upon their concentration. For example, in the case of naked TiO2 at pH 6, the zeta potential increased from -6.7 to 8.2 mV as the particle concentration varied from 0.5 to 5 mg L(-1). As a result, the isoelectric points of naked TiO2, Fe3O4, Fe(OH)3, and Al2O3-coated TiO2 could deviate ca. one, one, two, and three pH units, respectively, depending upon the particle concentration. We showed that these behaviors arise mainly from that the dissolved ambient CO2 reacts with the particle surface functional groups to form M-OCO2(-), which neutralizes or even overcompensates the particle surface charge. The surface density of M-OCO2(-), [M-OCO2(-)](s) depends upon the particle concentration; if it is sufficiently high, [M-OCO2(-)](s) becomes negligible, so is its influence on the zeta potential. We concluded that the zeta potential measurements for the tested NPs are reliable only if their concentration exceeds a certain level. This also applies to other metal oxides or hydroxides, the surface of which reacts appreciably with dissolved CO2. The results gathered are of practical significance in estimating the surface properties of unknown and/or newly synthesized NPs since conventional measurements are usually made at dilute particle concentrations.

115 citations

Journal ArticleDOI
TL;DR: In this paper, approximate analytical expressions are derived for the first time to estimate the surface-charge property and electroosmotic flow in charge-regulated nanochannels tuned by the nanofluidic FET and are validated by comparing their predictions to the existing experimental data available from the literature.
Abstract: The surface charge property of nanofluidic devices plays an essential role in electrokinetic transport of ions, fluids, and particles in them. The nanofluidic field effect transistor (FET), referring to a nanochannel embedded with an electrically controllable gate electrode, provides a simple way to rapidly regulate its surface charge property, which in turn controls the electrokinetic transport phenomena within the nanochannel. In this study, approximate analytical expressions are derived for the first time to estimate the surface-charge property and electroosmotic flow (EOF) in charge-regulated nanochannels tuned by the nanofluidic FET and are validated by comparing their predictions to the existing experimental data available from the literature. The control of the surface charge property as well as the EOF by the nanofluidic FET depends on the pH and ionic concentration of the aqueous solution.

103 citations

Journal ArticleDOI
TL;DR: In this article, electric field-induced ion transport and the resulting conductance in a polyelectrolyte-modified nanopore were theoretically studied using a continuum-based model, composed of coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport, and Stokes and Brinkman equations for hydrodynamic fields in the exterior and interior of the PE layer, respectively.
Abstract: Nanopores functionalized with synthetic or biological polyelectrolyte (PE) brushes have significant potentials to rectify ionic current and probe single biomacromolecules. In this work, electric-field-induced ion transport and the resulting conductance in a PE-modified nanopore are theoretically studied using a continuum-based model, composed of coupled Poisson–Nernst–Planck (PNP) equations for the ionic mass transport, and Stokes and Brinkman equations for the hydrodynamic fields in the exterior and interior of the PE layer, respectively. Because of the competition between the transport of counterions and co-ions in the nanopore, two distinct types of ion concentration polarization (CP) occur at either opening of the PE-modified nanopore. These distinct CP behaviors, which significantly affect the nanopore conductance, can be easily manipulated by adjusting the bulk salt concentration and the imposed potential bias. The induced CP in the PE-modified nanopore is more appreciable than that in the correspon...

102 citations


Cited by
More filters
01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations