scispace - formally typeset
Search or ask a question
Author

Jyri Näränen

Other affiliations: University of Helsinki
Bio: Jyri Näränen is an academic researcher from Finnish Geodetic Institute. The author has contributed to research in topics: Gamma-ray burst & Metallicity. The author has an hindex of 22, co-authored 46 publications receiving 1769 citations. Previous affiliations of Jyri Näränen include University of Helsinki.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the afterglow of the gamma-ray burst GRB 060206 was analyzed with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium.
Abstract: Aims.We present early optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium. We also discuss how GRBs may be important complementary probes of cosmic chemical evolution. Methods.Absorption line study of the GRB afterglow spectrum. Results.We determine the redshift of the GRB to be z=4.04795±0.00020. Based on the measurement of the neutral hydrogen column density from the damped Lyman-alpha line and the metal content from weak, unsaturated S II lines we derive a metallicity of [S/H]=-0.84±0.10. This is one of the highest metallicities measured from absorption lines at z~4. From the very high column densities for the forbidden Si II*, O I*, and O I** lines we infer very high densities and low temperatures in the system. There is evidence for the presence of H2 molecules with log N(H_2)~17.0, translating into a molecular fraction of log{f}≈ -3.5 with f=2N(H2)/(2N(H2) + N(H I)). Even if GRBs are only formed by single massive stars with metallicities below ~0.3 Zo, they could still be fairly unbiased tracers of the bulk of the star formation at z>2. Hence, metallicities as derived for GRB 060206 here for a complete sample of GRB afterglows will directly show the distribution of metallicities for representative star-forming galaxies at these redshifts.

187 citations

Journal ArticleDOI
TL;DR: In this article, the afterglow of the gamma-ray burst GRB 060206 was analyzed to determine the metallicity of the GRB absorber and the physical conditions in the circumburst medium.
Abstract: Aim: We present early optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium. We also discuss how GRBs may be important complementary probes of cosmic chemical evolution. Method: Absorption line study of the GRB afterglow spectrum. Results: We determine the redshift of the GRB to be z=4.04795+/-0.00020. Based on the measurement of the neutral hydrogen column density from the damped Lyman-alpha line and the metal content from weak, unsaturated Sii lines we derive a metallicity of [S/H] =-0.84+/-0.10. This is one of the highest metallicities measured from absorption lines at z~4. From the very high column densities for the forbidden Siii*, Oi*, and Oi** lines we infer very high densities and low temperatures in the system. There is evidence for the presence of H$_2$ molecules with logN(H_2) ~ 17.0, translating into a molecular fraction of logf \~ -3.5 with f=2N(H_2)/(2N(H_2)+ N(Hi)). Even if GRBs are only formed by single massive stars with metallicities below ~0.3Z(solar), they could still be fairly unbiased tracers of the bulk of the star formation at z>2. Hence, metallicities as derived for GRB060206 here for a complete sample of GRB afterglows will directly show the distribution of metallicities for representative star-forming galaxies at these redshifts.

183 citations

Journal ArticleDOI
TL;DR: In this paper, the afterglow of the gamma-ray burst (GRB) of February 18, 2006 was studied and optical lightcurves reaching out to 50 days past explosion were presented.
Abstract: Aims. We have studied the afterglow of the gamma-ray burst (GRB) of February 18, 2006. This is a nearby long GRB, with a very low peak energy, and is therefore classified as an X-ray Flash (XRF). XRF 060218 is clearly associated with a supernova – dubbed SN 2006aj. Methods. We present early spectra for SN 2006aj as well as optical lightcurves reaching out to 50 days past explosion. Results. Our optical lightcurves define the rise times, the lightcurve shapes and the absolute magnitudes in the U, V and R bands, and we compare these data with data for other relevant supernovae. SN 2006aj evolved quite fast, somewhat similarly to SN 2002ap, but not as fast as SN 1994I. Our spectra show the evolution of the supernova over the peak, when the U-band portion of the spectrum rapidly fades due to extensive line blanketing. We compare to similar spectra of very energetic type Ic supernovae. Our first spectra are earlier than spectra for any other GRB-SN. The spectrum taken 12 days after burst in the rest frame is similar to somewhat later spectra of both SN 1998bw and SN 2003dh, implying a rapid early evolution. This is consistent with the fast lightcurve. From the narrow emission lines from the host galaxy we derive a redshift of z = 0.0331 ± 0.0007. This makes XRF 060218 the second closest gamma-ray burst detected. The flux of these emission lines indicate a high-excitation state, and a modest metallicity and star formation rate of the host galaxy.

180 citations

Journal ArticleDOI
TL;DR: In this paper, the optical afterglow spectrum of GRB 050401 (at z = 2.8992 ± 0.0004) shows the presence of a damped Lyα absorber (DLA), with log N = 22.6 ± 1.3.
Abstract: The optical afterglow spectrum of GRB 050401 (at z = 2.8992 ± 0.0004) shows the presence of a damped Lyα absorber (DLA), with log N = 22.6 ± 0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H] = -1.0 ± 0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of log NH = 22.21 assuming solar abundances (at z = 2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H] = -0.4 ± 0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV = 0.62 ± 0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5 AV 4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV = 9.1. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). Gray extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears.

138 citations


Cited by
More filters
Book
04 Oct 2009
TL;DR: In this article, the authors present a review of vector calculus and functions of a complex variable and Fraunhoffer diffraction by a circular hole, and a miscellany of bidirectional reflectances and related quantities.
Abstract: Acknowledgements 1. Introduction 2. Electromagnetic wave propagation 3. The absorption of light 4. Specular reflection 5. Single particle scattering: perfect spheres 6. Single particle scattering: irregular particles 7. Propagation in a nonuniform medium: the equation of radiative transfer 8. The bidirectional reflectance of a semi-infinite medium 9. The opposition effect 10. A miscellany of bidirectional reflectances and related quantities 11. Integrated reflectances and planetary photometry 12. Photometric effects of large scale roughness 13. Polarization 14. Reflectance spectroscopy 15. Thermal emission and emittance spectroscopy 16. Simultaneous transport of energy by radiation and conduction Appendix A. A brief review of vector calculus Appendix B. Functions of a complex variable Appendix C. The wave equation in spherical coordinates Appendix D. Fraunhoffer diffraction by a circular hole Appendix E. Table of symbols Bibliography Index.

1,951 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Journal ArticleDOI
TL;DR: A review of reflectance nomenclature used in remote sensing can be found in this paper, where the authors highlight the importance of a proper usage of definitions through quantitative comparison of different reflectance products with special emphasis on wavelength dependent effects.

1,051 citations

Journal ArticleDOI
TL;DR: A comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered, can be found in this paper.

864 citations

Journal ArticleDOI
TL;DR: A comprehensive review of major developments in the understanding of gamma-ray bursts can be found in this article, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered.
Abstract: We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to multi-GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet and compare these properties with jets associated with AGNs and pulsars. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.

814 citations