scispace - formally typeset
Search or ask a question
Author

K. A. Cliffe

Other affiliations: AEA Technology
Bio: K. A. Cliffe is an academic researcher from University of Nottingham. The author has contributed to research in topics: Reynolds equation & Reynolds number. The author has an hindex of 20, co-authored 44 publications receiving 2116 citations. Previous affiliations of K. A. Cliffe include AEA Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo Method, is described, and numerically its superiority is demonstrated.
Abstract: We consider the numerical solution of elliptic partial differential equations with random coefficients Such problems arise, for example, in uncertainty quantification for groundwater flow We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo method, and demonstrate numerically its superiority The asymptotic cost of solving the stochastic problem with the multilevel method is always significantly lower than that of the standard method and grows only proportionally to the cost of solving the deterministic problem in certain circumstances Numerical calculations demonstrating the effectiveness of the method for one- and two-dimensional model problems arising in groundwater flow are presented

571 citations

Journal ArticleDOI
TL;DR: In this article, the origin of steady asymmetric flows in a symmetric sudden expansion is studied using experimental and numerical techniques, and it is shown that the asymmetry arises at a symmetry-breaking bifurcation and good agreement between the experiments and numerical calculations is obtained.
Abstract: The origin of steady asymmetric flows in a symmetric sudden expansion is studied using experimental and numerical techniques. We show that the asymmetry arises at a symmetry-breaking bifurcation and good agreement between the experiments and numerical calculations is obtained. At higher Reynolds numbers the flow becomes time-dependent and there is experimental evidence that this is associated with three-dimensional effects.

352 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed case study is made of one particular solution of the 2D incompressible Navier-Stokes equations, and careful mesh refinement studies were made using four different methods (and computer codes): (1) a high-order finite-element method solving the unsteady equations by time-marching; (2) a higher-order fixed element method solving both the steady equations and the associated linear- stability problem; (3) a second-order infinite difference method (SDF) solving the unsafe equations in stream function form by time
Abstract: A detailed case study is made of one particular solution of the 2D incompressible Navier-Stokes equations. Careful mesh refinement studies were made using four different methods (and computer codes): (1) a high-order finite-element method solving the unsteady equations by time-marching; (2) a high-order finite-element method solving both the steady equations and the associated linear- stability problem; (3) a second-order finite difference method solving the unsteady equations in streamfunction form by time-marching; and (4) a spectral-element method solving the unsteady equations by time-marching. The unanimous conclusion is that the correct solution for flow over the backward-facing step at Re=800 is steady - and it is stable, to both small and large perturbations.

169 citations

Journal ArticleDOI
TL;DR: In this paper, the singularity theory developed by Golubitsky and Schaeffer to classify bifurcation points was used to solve the Taylor-Couette problem and provided a convergence theory for the mixed finite element method applied to the Navier-Stokes equations.
Abstract: In this review we discuss bifurcation theory in a Banach space setting using the singularity theory developed by Golubitsky and Schaeffer to classify bifurcation points. The numerical analysis of bifurcation problems is discussed and the convergence theory for several important bifurcations is described for both projection and finite difference methods. These results are used to provide a convergence theory for the mixed finite element method applied to the steady incompressible Navier–Stokes equations. Numerical methods for the calculation of several common bifurcations are described and the performance of these methods is illustrated by application to several problems in fluid mechanics. A detailed description of the Taylor–Couette problem is given, and extensive numerical and experimental results are provided for comparison and discussion.

118 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: A large selection of solution methods for linear systems in saddle point form are presented, with an emphasis on iterative methods for large and sparse problems.
Abstract: Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.

2,253 citations

Journal ArticleDOI
TL;DR: An extensive review of the literature in V&V in computational fluid dynamics (CFD) is presented, methods and procedures for assessing V &V are discussed, and a relatively new procedure for estimating experimental uncertainty is given that has proven more effective at estimating random and correlated bias errors in wind-tunnel experiments than traditional methods.

948 citations