scispace - formally typeset
Search or ask a question
Author

K A GschneidnerJr

Bio: K A GschneidnerJr is an academic researcher from Iowa State University. The author has contributed to research in topics: Magnetic refrigeration. The author has an hindex of 1, co-authored 1 publications receiving 2726 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The recent literature concerning the magnetocaloric effect (MCE) has been reviewed and correlations have been made comparing the behaviours of the different families of magnetic materials which exhibit large or unusual MCE values.
Abstract: The recent literature concerning the magnetocaloric effect (MCE) has been reviewed. The MCE properties have been compiled and correlations have been made comparing the behaviours of the different families of magnetic materials which exhibit large or unusual MCE values. These families include: the lanthanide (R) Laves phases (RM2, where M = Al, Co and Ni), Gd5(Si1−xGex)4 ,M n(As1−xSbx), MnFe(P1−xAsx), La(Fe13−xSix) and their hydrides and the manganites (R1−xMxMnO3, where R = lanthanide and M = Ca, Sr and Ba). The potential for use of these materials in magnetic refrigeration is discussed, including a comparison with Gd as a near room temperature active magnetic regenerator material. (Some figures in this article are in colour only in the electronic version)

3,002 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed and their potential impact on energy efficiency is discussed.
Abstract: A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy effi ciency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the effi ciency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifi cally, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure‐property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy effi ciency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed.

2,465 citations

Journal ArticleDOI
TL;DR: Heusler compounds as discussed by the authors are a remarkable class of intermetallic materials with 1:1:1 or 2:1-1 composition comprising more than 1500 members, and their properties can easily be predicted by the valence electron count.

1,675 citations

Journal ArticleDOI
TL;DR: In this article, a new class of magnetocaloric material, that is, the ferromagnetic perovskite manganites (R1−xMxMnO3, where R=La, Nd, Pr and M=Ca, Sr, Ba, etc.).

1,568 citations

Journal ArticleDOI
TL;DR: A phenomenological model is established that reveals the parameters essential for such a large adiabatic temperature change ΔT(ad), and it is demonstrated that obstacles to the application of Heusler alloys can be overcome by using the multi-response to different external stimuli and/or fine-tuning the lattice parameters.
Abstract: Magnetic cooling could be a radically different energy solution that could replace conventional vapour compression refrigeration in the future. It is now shown that a Heusler-type magnetocaloric alloy exhibits a remarkable cooling capability due to the effect of a sharp structural transformation at a specific temperature. The finding may be of relevance beyond Heusler alloys and represents an important step towards the implementation of cooling systems based on magnetocaloric materials.

1,233 citations

Journal ArticleDOI
TL;DR: The resulting magnetocaloric, electrocaloric and mechanocaloric effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Abstract: A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.

1,101 citations