scispace - formally typeset
Search or ask a question
Author

K. A. Marsh

Bio: K. A. Marsh is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Plasma acceleration & Plasma. The author has an hindex of 42, co-authored 218 publications receiving 7473 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 1995-Nature
TL;DR: In this article, the authors report observations of relativistic plasma waves driven to breaking point by the Raman forward-scattering instability induced by short, high-intensity laser pulses.
Abstract: ELECTRONS in a plasma undergo collective wave-like oscillations near the plasma frequency. These plasma waves can have a range of wavelengths and hence a range of phase velocities1. Of particular note are relativistic plasma waves2,3, for which the phase velocity approaches the speed of light; the longitudinal electric field associated with such waves can be extremely large, and can be used to accelerate electrons (either injected externally or supplied by the plasma) to high energies over very short distances2a¤-4. The maximum electric field, and hence maximum acceleration rate, that can be obtained in this way is determined by the maximum amplitude of oscillation that can be supported by the plasma5a¤-8. When this limit is reached, the plasma wave is said to a¤˜breaka¤™. Here we report observations of relativistic plasma waves driven to breaking point by the Raman forward-scattering instability9,10 induced by short, high-intensity laser pulses. The onset of wave-breaking is indicated by a sudden increase in both the number and maximum energy (up to 44 MeV) of accelerated plasma electrons, as well as by the loss of coherence of laser light scattered from the plasma wave.

705 citations

Journal ArticleDOI
15 Feb 2007-Nature
TL;DR: An energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42‬GeV electron beam at the Stanford Linear Accelerator Center (SLAC), in excellent agreement with the predictions of three-dimensional particle-in-cell simulations.
Abstract: The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of approximately 52 GV m(-1). This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a metre for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

638 citations

Journal ArticleDOI
06 Nov 2014-Nature
TL;DR: This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.
Abstract: To develop plasma wakefield acceleration into a compact and affordable replacement for conventional accelerators, beams of charged particles must be accelerated at high efficiency in a high electric field; here this is demonstrated for a bunch of charged electrons ‘surfing’ on a previously excited plasma wave. Particle colliders that operate at the high-energy frontier using electric fields generated by radio waves are approaching the limits of feasibility in terms of size and cost, but there are other acceleration techniques that could make less expensive and more compact devices. The plasma wakefield accelerator, in which an electron bunch is accelerated by making it 'surf' on a plasma wave excited by another electron bunch, promises an energy gain in the gigaelectron-volt regime over just a few centimetres — an energy gain that requires hundreds of metres using traditional accelerators. Previously, this technique had only been used to accelerate a very small number of electrons at a time. Now, researchers working at FACET, the Facility for Advanced Accelerator Experimental Tests at SLAC National Accelerator Laboratory, USA, have achieved acceleration of about half a billion electrons at once with an unprecedented efficiency for a plasma accelerator. This achievement could be a milestone in the development of affordable and compact accelerators for applications ranging from high energy physics to medical and industrial applications. High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept1,2,3 being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma4,5,6. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma7. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.

468 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the large difference in ionization potentials between successive ionization states of trace atoms for injecting electrons into a laser-driven wakefield, where a mixture of helium and trace amounts of nitrogen gas was used.
Abstract: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

422 citations

Journal Article
TL;DR: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented, and a mixture of helium and trace amounts of nitrogen gas was used.
Abstract: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

382 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: It is demonstrated that this randomization of electrons in phase space can be suppressed and that the quality of the electron beams can be dramatically enhanced.
Abstract: Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

1,854 citations

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Abstract: Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3) These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance The results open the way for compact and tunable high-brightness sources of electrons and radiation

1,749 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: High-resolution energy measurements of the electron beams produced from intense laser–plasma interactions are reported, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread.
Abstract: High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

1,739 citations