scispace - formally typeset
Search or ask a question
Author

K.A. Reddy

Bio: K.A. Reddy is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Artifact (error) & Data compression. The author has an hindex of 3, co-authored 3 publications receiving 224 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results indicate that the proposed method is insensitive to heart rate variation, introduces negligible error in the processed PPG signals due to the additional processing, preserves all the morphological features of the PPG, provides 35 dB reduction in motion artifacts, and achieves a data compression factor of 12.
Abstract: Pulse oximeters require artifact-free clean photoplethysmograph (PPG) signals obtained at red and infrared (IR) wavelengths for the estimation of the level of oxygen saturation ( SpO2) in the arterial blood of a patient. Movement of a patient corrupts a PPG signal with motion artifacts and introduces large errors in the computation of SpO2. A novel method for removing motion artifacts from corrupted PPG signals by applying Fourier series analysis on a cycle-by-cycle basis is presented in this paper. Aside from artifact reduction, the proposed method also provides data compression. Experimental results indicate that the proposed method is insensitive to heart rate variation, introduces negligible error in the processed PPG signals due to the additional processing, preserves all the morphological features of the PPG, provides 35 dB reduction in motion artifacts, and achieves a data compression factor of 12.

152 citations

Proceedings ArticleDOI
01 May 2007
TL;DR: In this article, a singular value decomposition (SVD) based method is proposed to reduce motion artifacts from corrupted PPG signals, which is shown to achieve stable and reliable SpO2 measurement even when PPGs are distorted by motion artifacts.
Abstract: Artifact free photoplethysmographic (PPG) signals, obtained with red and infrared (IR) optical sources and detectors are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of SpO2. This paper presents a novel singular value decomposition (SVD) based method to reduce motion artifacts from corrupted PPG signals. Test results on a prototype incorporating the proposed SVD technique show that stable and reliable SpO2 measurement is achieved even when PPGs are distorted by motion artifacts, thus establishing the efficacy of the proposed method.

83 citations

Proceedings ArticleDOI
12 May 2008
TL;DR: Experimental results indicate that the proposed method is insensitive to heart rate variation, introduces negligible error in the processed PPG signals due to the additional processing, preserves all the morphological features of the PPG, provides 35 dB reduction in motion artifact and achieves a data compression factor of 12.
Abstract: Artifact-free clean photoplethysmographic (PPG) signals obtained at red and infrared (IR) wavelengths are required for the estimation of the level of oxygen saturation (SpO2) in arterial blood of a patient. Movement of a patient corrupts a PPG signal with motion artifacts and introduces large errors in the computation of SpO2- A novel method to remove motion artifacts from corrupted PPG signals by applying Fourier series analysis on a cycle by cycle basis is presented in this paper. Over and above artifact reduction, the proposed method also provides data compression. Experimental results indicate that the proposed method is insensitive to heart rate variation, introduces negligible error in the processed PPG signals due to the additional processing, preserves all the morphological features of the PPG, provides 35 dB reduction in motion artifact and achieves a data compression factor of 12.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of wearable pulse rate sensors with green LEDs can be found in this paper. But, the authors do not discuss the application of these sensors in the medical field. But, they briefly present the history of wearable PPG and recent developments in wearable pulse-rate sensors.
Abstract: Photoplethysmography (PPG) technology has been used to develop small, wearable, pulse rate sensors. These devices, consisting of infrared light-emitting diodes (LEDs) and photodetectors, offer a simple, reliable, low-cost means of monitoring the pulse rate noninvasively. Recent advances in optical technology have facilitated the use of high-intensity green LEDs for PPG, increasing the adoption of this measurement technique. In this review, we briefly present the history of PPG and recent developments in wearable pulse rate sensors with green LEDs. The application of wearable pulse rate monitors is discussed.

700 citations

Journal ArticleDOI
TL;DR: This review explains the conventional BP measurement methods and their limitations; presents models to summarize the theory of the PTT-BP relationship; outlines the approach while pinpointing the key challenges; and discusses realistic expectations for the approach.
Abstract: Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work toward putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach.

648 citations

Journal ArticleDOI
TL;DR: A general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for denoising, sparse signal RecOnstructIon for high-resolution spectrum estimation, and spectral peaK trAcking with verification and many variants can be straightforwardly derived from this framework.
Abstract: Heart rate monitoring using wrist-type photoplethysmographic signals during subjects’ intensive exercise is a difficult problem, since the signals are contaminated by extremely strong motion artifacts caused by subjects’ hand movements. So far few works have studied this problem. In this study, a general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for denoising, sparse signal RecOnstructIon for high-resolution spectrum estimation, and spectral peaK trAcking with verification. The TROIKA framework has high estimation accuracy and is robust to strong motion artifacts. Many variants can be straightforwardly derived from this framework. Experimental results on datasets recorded from 12 subjects during fast running at the peak speed of 15 km/h showed that the average absolute error of heart rate estimation was 2.34 beat per minute, and the Pearson correlation between the estimates and the ground truth of heart rate was 0.992. This framework is of great values to wearable devices such as smartwatches which use PPG signals to monitor heart rate for fitness.

615 citations

Journal ArticleDOI
TL;DR: The merit of the method is clearly demonstrated using convergence and correlation analysis, thus making it best suitable for present-day pulse oximeters utilizing PPG sensor head with a single pair of source and detector, which does not have any extra hardware meant for capturing noise reference signal.
Abstract: The performance of pulse oximeters is highly influenced by motion artifacts (MAs) in photoplethysmographic (PPG) signals. In this paper, we propose a simple and efficient approach based on adaptive step-size least mean squares (AS-LMS) adaptive filter for reducing MA in corrupted PPG signals. The presented method is an extension to our prior work on efficient use of adaptive filters for reduction of MA in PPG signals. The novelty of the method lies in the fact that a synthetic noise reference signal for an adaptive filtering process, representing MA noise, is generated internally from the MA-corrupted PPG signal itself instead of using any additional hardware such as accelerometer or source-detector pair for acquiring noise reference signal. Thus, the generated noise reference signal is then applied to the AS-LMS adaptive filter for artifact removal. While experimental results proved the efficacy of the proposed scheme, the merit of the method is clearly demonstrated using convergence and correlation analysis, thus making it best suitable for present-day pulse oximeters utilizing PPG sensor head with a single pair of source and detector, which does not have any extra hardware meant for capturing noise reference signal. In addition to arterial oxygen saturation estimation, the artifact reduction method facilitated the waveform contour analysis on artifact-reduced PPG, and the conventional parameters were evaluated for assessing the arterial stiffness.

308 citations

Journal ArticleDOI
TL;DR: This work introduces dynamic time warping to stretch each beat to match a running template and combines it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped to assess the clinical utility of PPG traces.
Abstract: In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

240 citations