scispace - formally typeset
Search or ask a question
Author

K.E. Gungor

Bio: K.E. Gungor is an academic researcher from University of Birmingham. The author has contributed to research in topics: Subcooling & Boiling. The author has an hindex of 1, co-authored 1 publications receiving 940 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new general correlation for forced convection boiling has been developed with the aid of a large data bank consisting of over 4300 data points for water, refrigerants and ethylene glycol, covering seven fluids and 28 authors.

1,050 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a simple correlation was developed earlier by Kandlikar (1983) for predicting saturated flow boiling heat transfer coefficients inside horizontal and vertical tubes, which was further refined by expanding the data base to 5,246 data points from 24 experimental investigations with ten fluids.
Abstract: A simple correlation was developed earlier by Kandlikar (1983) for predicting saturated flow boiling heat transfer coefficients inside horizontal and vertical tubes. It was based on a model utilizing the contributions due to nucleate boiling and convective mechanisms. It incorporated a fluid-dependent parameter F{sub fl} in the nucleate boiling term. The predictive ability of the correlation for different refrigerants was confirmed by comparing it with the recent data on R-113 by Jensen and Bensler (1986) and Khanpara et al. (1986). In the present work, the earlier correlation is further refined by expanding the data base to 5,246 data points from 24 experimental investigations with ten fluids. The proposed correlation gives a mean deviation of 15.9 percent with water data, and 18.8 percent with all refrigerant data, and it also predicts the correct h{sub TP} versus x trend as verified with water and R-113 data yielded the lowest mean deviations among correlations tested. The proposed correlation can be extended to other fluids by evaluating the fluid-dependent parameter F{sub fl} for that fluid from its flow boiling or pool boiling data.

1,003 citations

Journal ArticleDOI
TL;DR: The authors showed that the eonvective term in the correlation should have a Prandtl number dependence and constructed an accurate predictive method with an explicit nucleate boiling term and without boiling number dependence.

803 citations

Journal ArticleDOI
TL;DR: In this paper, a review examines recent advances made in predicting boiling heat fluxes, including some key results from the past, including nucleate boiling, maximum heat flux, transition boiling, and film boiling.
Abstract: ▪ Abstract This review examines recent advances made in predicting boiling heat fluxes, including some key results from the past. The topics covered are nucleate boiling, maximum heat flux, transition boiling, and film boiling. The review focuses on pool boiling of pure liquids, but flow boiling is also discussed briefly.

575 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured and predicted saturated flow boiling heat transfer in a water-cooled micro-channel heat sink and found that the dominant heat transfer mechanism is forced convective boiling corresponding to annular flow.

556 citations

Journal ArticleDOI
TL;DR: In this paper, an improved two-phase flow pattern map is proposed for evaporation in horizontal tubes based on flow pattern data for five different refrigerants covering a wide range of mass velocities and vapor qualities.
Abstract: An improved two-phase flow pattern map is proposed for evaporation in horizontal tubes. The new map was developed based on flow pattern data for five different refrigerants covering a wide range of mass velocities and vapor qualities. The new map is valid for both adiabatic and diabatic (evaporating) flows and accurately identifies about 96% of the 702 data points. In addition, the new flow pattern map includes the prediciton of the onset of dryout at the top of the tube during evaporation inside horizontal tubes as a function of heat flux and flow parameters.

460 citations