scispace - formally typeset
Search or ask a question
Author

K. F. Jensen,‡,§ and

Bio: K. F. Jensen,‡,§ and is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Quantum dot & Spectroscopy. The author has an hindex of 1, co-authored 1 publications receiving 4140 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 A was reported.
Abstract: We report a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 A. The narrow photoluminescence (fwhm ≤ 40 nm) from these composite dots spans most of the visible spectrum from blue through red with quantum yields of 30−50% at room temperature. We characterize these materials using a range of optical and structural techniques. Optical absorption and photoluminescence spectroscopies probe the effect of ZnS passivation on the electronic structure of the dots. We use a combination of wavelength dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, small and wide angle X-ray scattering, and transmission electron microscopy to analyze the composite dots and determine their chemical composition, average size, size distribution, shape, and internal structure. Using a simple effective mass theory, we model the energy shift for the first excited state for (CdSe)ZnS and (CdSe)CdS dots with varying shell thickness. Finally, we characterize the...

4,293 citations


Cited by
More filters
Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Abstract: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

7,393 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,875 citations

Journal ArticleDOI
02 Mar 2000-Nature
TL;DR: Control of the growth kinetics of the II–VI semiconductor cadmium selenide can be used to vary the shapes of the resulting particles from a nearly spherical morphology to a rod-like one, with aspect ratios as large as ten to one.
Abstract: Nanometre-size inorganic dots, tubes and wires exhibit a wide range of electrical and optical properties1,2 that depend sensitively on both size and shape3,4, and are of both fundamental and technological interest In contrast to the syntheses of zero-dimensional systems, existing preparations of one-dimensional systems often yield networks of tubes or rods which are difficult to separate5,6,7,8,9,10,11,12 And, in the case of optically active II–VI and III–V semiconductors, the resulting rod diameters are too large to exhibit quantum confinement effects6,8,9,10 Thus, except for some metal nanocrystals13, there are no methods of preparation that yield soluble and monodisperse particles that are quantum-confined in two of their dimensions For semiconductors, a benchmark preparation is the growth of nearly spherical II–VI and III–V nanocrystals by injection of precursor molecules into a hot surfactant14,15 Here we demonstrate that control of the growth kinetics of the II–VI semiconductor cadmium selenide can be used to vary the shapes of the resulting particles from a nearly spherical morphology to a rod-like one, with aspect ratios as large as ten to one This method should be useful, not only for testing theories of quantum confinement, but also for obtaining particles with spectroscopic properties that could prove advantageous in biological labelling experiments16,17 and as chromophores in light-emitting diodes18,19

4,288 citations