scispace - formally typeset
Search or ask a question
Author

K.H. Lee

Bio: K.H. Lee is an academic researcher from National University of Singapore. The author has contributed to research in topics: Plate theory & Finite element method. The author has an hindex of 23, co-authored 48 publications receiving 1812 citations. Previous affiliations of K.H. Lee include Institute of High Performance Computing Singapore.

Papers
More filters
Journal ArticleDOI
TL;DR: An approach for generating accurate geometrically parameterized integrated circuit interconnect models that are efficient enough for use in interconnect synthesis is described, based on a multiparameter moment matching model-reduction algorithm.
Abstract: In this paper, we describe an approach for generating accurate geometrically parameterized integrated circuit interconnect models that are efficient enough for use in interconnect synthesis. The model-generation approach presented is automatic, and is based on a multiparameter moment matching model-reduction algorithm. A moment-matching theorem proof for the algorithm is derived, as well as a complexity analysis for the model-order growth. The effectiveness of the technique is tested using a capacitance extraction example, where the plate spacing is considered as the geometric parameter, and a multiline bus example, where both wire spacing and wire width are considered as geometric parameters. Experimental results demonstrate that the generated models accurately predict capacitance values for the capacitor example, and both delay and cross-talk effects over a reasonably wide range of spacing and width variation for the multiline bus example.

362 citations

Journal ArticleDOI
TL;DR: In this article, a simple layerwise higher-order zig-zag model is proposed for the bending of laminated composite plates, which accounts for a cubic variation of the in-plane displacements in each layer, and a parabolic variation of transverse shear stresses across the laminate with zero values at the free surfaces.

134 citations

Journal ArticleDOI
TL;DR: In this article, a finite element formulation for the analysis of the free vibration of composite plates with multiple delaminations is presented, which can be easily used to compute the natural frequencies and mode shapes of delaminated plates with arbitrary boundary conditions.

118 citations

Journal ArticleDOI
TL;DR: A neural-network-based method that combines robust principal component analysis (PCA) neural network model with Galerkin procedure with a number of numerical advantages such as the stability and robustness to noise-injected data and the faster convergence of iterations in the training stages than the existing neural network technique.

104 citations


Cited by
More filters
Book
22 Jun 2009
TL;DR: This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling.
Abstract: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

2,735 citations

Book
01 Jan 2004
TL;DR: In this article, the authors present a set of heuristics for solving problems with probability and statistics, including the Traveling Salesman Problem and the Problem of Who Owns the Zebra.
Abstract: I What Are the Ages of My Three Sons?.- 1 Why Are Some Problems Difficult to Solve?.- II How Important Is a Model?.- 2 Basic Concepts.- III What Are the Prices in 7-11?.- 3 Traditional Methods - Part 1.- IV What Are the Numbers?.- 4 Traditional Methods - Part 2.- V What's the Color of the Bear?.- 5 Escaping Local Optima.- VI How Good Is Your Intuition?.- 6 An Evolutionary Approach.- VII One of These Things Is Not Like the Others.- 7 Designing Evolutionary Algorithms.- VIII What Is the Shortest Way?.- 8 The Traveling Salesman Problem.- IX Who Owns the Zebra?.- 9 Constraint-Handling Techniques.- X Can You Tune to the Problem?.- 10 Tuning the Algorithm to the Problem.- XI Can You Mate in Two Moves?.- 11 Time-Varying Environments and Noise.- XII Day of the Week of January 1st.- 12 Neural Networks.- XIII What Was the Length of the Rope?.- 13 Fuzzy Systems.- XIV Everything Depends on Something Else.- 14 Coevolutionary Systems.- XV Who's Taller?.- 15 Multicriteria Decision-Making.- XVI Do You Like Simple Solutions?.- 16 Hybrid Systems.- 17 Summary.- Appendix A: Probability and Statistics.- A.1 Basic concepts of probability.- A.2 Random variables.- A.2.1 Discrete random variables.- A.2.2 Continuous random variables.- A.3 Descriptive statistics of random variables.- A.4 Limit theorems and inequalities.- A.5 Adding random variables.- A.6 Generating random numbers on a computer.- A.7 Estimation.- A.8 Statistical hypothesis testing.- A.9 Linear regression.- A.10 Summary.- Appendix B: Problems and Projects.- B.1 Trying some practical problems.- B.2 Reporting computational experiments with heuristic methods.- References.

2,089 citations

Journal ArticleDOI
TL;DR: An overview of the virtual crack closure technique is presented, the approach used is discussed, the history summarized, and insight into its applications provided.
Abstract: : An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.

1,354 citations

Journal ArticleDOI
TL;DR: Model reduction aims to reduce the computational burden by generating reduced models that are faster and cheaper to simulate, yet accurately represent the original large-scale system behavior as mentioned in this paper. But model reduction of linear, nonparametric dynamical systems has reached a considerable level of maturity, as reflected by several survey papers and books.
Abstract: Numerical simulation of large-scale dynamical systems plays a fundamental role in studying a wide range of complex physical phenomena; however, the inherent large-scale nature of the models often leads to unmanageable demands on computational resources. Model reduction aims to reduce this computational burden by generating reduced models that are faster and cheaper to simulate, yet accurately represent the original large-scale system behavior. Model reduction of linear, nonparametric dynamical systems has reached a considerable level of maturity, as reflected by several survey papers and books. However, parametric model reduction has emerged only more recently as an important and vibrant research area, with several recent advances making a survey paper timely. Thus, this paper aims to provide a resource that draws together recent contributions in different communities to survey the state of the art in parametric model reduction methods. Parametric model reduction targets the broad class of problems for wh...

1,230 citations

Journal ArticleDOI
TL;DR: (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations are considered.
Abstract: In this paper we consider (hierarchical, La-grange)reduced basis approximation anda posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equa-tions. The essential ingredients are (primal-dual)Galer-kin projection onto a low-dimensional space associated with a smooth “parametric manifold” - dimension re-duction; efficient and effective greedy sampling meth-ods for identification of optimal and numerically stable approximations - rapid convergence;a posteriori er-ror estimation procedures - rigorous and sharp bounds for the linear-functional outputs of interest; and Offine-Online computational decomposition strategies - min-imummarginal cost for high performance in the real-time/embedded (e.g., parameter-estimation, control)and many-query (e.g., design optimization, multi-model/ scale)contexts. We present illustrative results for heat conduction and convection-diffusion,inviscid flow, and linear elasticity; outputs include transport rates, added mass,and stress intensity factors.

1,090 citations