scispace - formally typeset
Search or ask a question
Author

K. H. Raedler

Bio: K. H. Raedler is an academic researcher. The author has contributed to research in topics: Dynamo theory & Solar dynamo. The author has an hindex of 1, co-authored 1 publications receiving 1451 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: The current understanding of astrophysical magnetic fields is reviewed in this paper, focusing on their generation and maintenance by turbulence, where analytical and numerical results are discussed both for small scale dynamos, which are completely isotropic, and for large scale dynamo, where some form of parity breaking is crucial.

1,548 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state.
Abstract: In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

1,212 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of weak, small-scale magnetic field structure on the rate of reconnection in strongly magnetized plasmas was examined and an upper limit of ~VA2 was derived by invoking both effects.
Abstract: We examine the effect of weak, small-scale magnetic field structure on the rate of reconnection in a strongly magnetized plasma. This affects the rate of reconnection by reducing the transverse scale for reconnection flows and by allowing many independent flux reconnection events to occur simultaneously. Allowing only for the first effect and using Goldreich & Sridhar's model of strong turbulence in a magnetized plasma with negligible intermittency, we find a lower limit for the reconnection speed ~VA-3/16L3/4, where VA is the Alfven speed, L is the Lundquist number, and is the large-scale magnetic Mach number of the turbulence. We derive an upper limit of ~VA2 by invoking both effects. We argue that generic reconnection in turbulent plasmas will normally occur at close to this upper limit. The fraction of magnetic energy that goes directly into electron heating scales as -2/5L8/5, and the thickness of the current sheet scales as -3/5L-2/5. A significant fraction of the magnetic energy goes into high-frequency Alfven waves. The angle between adjacent field lines on the same side of the reconnection layer is ~-1/5L6/5 on the scale of the current sheet thickness. We claim that the qualitative sense of these conclusions, that reconnection is fast even though current sheets are narrow, is almost independent of the local physics of reconnection and the nature of the turbulent cascade. As the consequence of this the Galactic and solar dynamos are generically fast, i.e., do not depend on the plasma resistivity.

1,022 citations

Journal ArticleDOI
TL;DR: A variety of observations suggest that magnetic fields are present in all galaxies and galaxy clusters as mentioned in this paper, but fundamental questions concerning the nature of the dynamo as well as the origin of the seed fields necessary to prime it remain unclear.
Abstract: A variety of observations suggest that magnetic fields are present in all galaxies and galaxy clusters. These fields are characterized by a modest strength ${(10}^{\ensuremath{-}7}\char21{}{10}^{\ensuremath{-}5}\mathrm{G})$ and huge spatial scale $(\ensuremath{\lesssim}1\mathrm{Mpc}).$ It is generally assumed that magnetic fields in spiral galaxies arise from the combined action of differential rotation and helical turbulence, a process known as the \ensuremath{\alpha}\ensuremath{\omega} dynamo. However, fundamental questions concerning the nature of the dynamo as well as the origin of the seed fields necessary to prime it remain unclear. Moreover, the standard \ensuremath{\alpha}\ensuremath{\omega} dynamo does not explain the existence of magnetic fields in elliptical galaxies and clusters. The author summarizes what is known observationally about magnetic fields in galaxies, clusters, superclusters, and beyond. He then reviews the standard dynamo paradigm, the challenges that have been leveled against it, and several alternative scenarios. He concludes with a discussion of astrophysical and early-Universe candidates for seed fields.

861 citations

Journal ArticleDOI
TL;DR: In this paper, a series of increasingly complex dynamo models are constructed, with the primary aim of reproducing the various basic observed characteristics of the solar magnetic activity cycle, and global and local magnetohydrodynamcial simulations of solar convection, and dynamo action therein, are also considered.
Abstract: This chapter details a series of dynamo models applicable to the sun and solar-type stars. After introducing the theoretical framework known as mean-field electrodynamics, a series of increasingly complex dynamo models are constructed, with the primary aim of reproducing the various basic observed characteristics of the solar magnetic activity cycle. Global and local magnetohydrodynamcial simulations of solar convection, and dynamo action therein, are also considered, and the resulting magnetic cycles compared and contrasted to those obtained in the simpler dynamo models. The focus throughout the chapter is on the sun, simply because the amount of available observational material on the solar magnetic field and its cycle dwarfs anything else in the astrophysical realm, in terms of spatial and temporal resolution, sensitivity, and time span.

752 citations