scispace - formally typeset
Search or ask a question
Author

K. Hagiwara

Other affiliations: KEK
Bio: K. Hagiwara is an academic researcher from Durham University. The author has contributed to research in topics: Elementary particle & Higgs boson. The author has an hindex of 23, co-authored 30 publications receiving 31900 citations. Previous affiliations of K. Hagiwara include KEK.

Papers
More filters
Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations

Journal ArticleDOI
K. Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, Patricia R. Burchat4, C. D. Carone5, C. Caso, G. Conforto6, Olav Dahl3, Michael Doser7, Semen Eidelman8, Jonathan L. Feng9, L. K. Gibbons10, Maury Goodman11, Christoph Grab12, D. E. Groom3, Atul Gurtu7, Atul Gurtu13, K. G. Hayes14, J. J. Herna`ndez-Rey15, K. Honscheid16, Christopher Kolda17, Michelangelo L. Mangano7, David Manley18, Aneesh V. Manohar19, John March-Russell7, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama20, Hitoshi Murayama3, S. Sánchez Navas12, Keith A. Olive21, Luc Pape7, C. Patrignani, A. Piepke22, Matts Roos23, John Terning24, Nils A. Tornqvist23, T. G. Trippe3, Petr Vogel25, C. G. Wohl3, Ron L. Workman26, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso27, D. Asner28, K. S. Babu29, E. L. Barberio7, Marco Battaglia7, H. Bichsel30, O. Biebel31, Philippe Bloch7, Robert N. Cahn3, Ariella Cattai7, R. S. Chivukula32, R. Cousins33, G. A. Cowan34, Thibault Damour35, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira, Jens Erler36, V. V. Ezhela, A Fassò7, W. Fetscher12, Brian D. Fields37, B. Foster38, Daniel Froidevaux7, Masataka Fukugita39, Thomas K. Gaisser40, L. Garren, H.-J. Gerber12, Frederick J. Gilman41, Howard E. Haber42, C. A. Hagmann28, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan30, G. Höhler43, P. Igo-Kemenes44, John David Jackson3, Kurtis F Johnson45, D. Karlen, B. Kayser, S. R. Klein3, Konrad Kleinknecht46, I.G. Knowles47, P. Kreitz4, Yu V. Kuyanov, R. Landua7, Paul Langacker36, L. S. Littenberg48, Alan D. Martin49, Tatsuya Nakada7, Tatsuya Nakada50, Meenakshi Narain32, Paolo Nason, John A. Peacock47, Helen R. Quinn4, Stuart Raby16, Georg G. Raffelt31, E. A. Razuvaev, B. Renk46, L. Rolandi7, Michael T Ronan3, L.J. Rosenberg51, Christopher T. Sachrajda52, A. I. Sanda53, Subir Sarkar54, Michael Schmitt55, O. Schneider50, Douglas Scott56, W. G. Seligman57, Michael H. Shaevitz57, Torbjörn Sjöstrand58, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner59, Mark Srednicki60, A. Stahl, Todor Stanev40, M. Suzuki3, N. P. Tkachenko, German Valencia61, K. van Bibber28, Manuella Vincter62, D. R. Ward63, Bryan R. Webber63, M R Whalley49, Lincoln Wolfenstein41, J. Womersley, C. L. Woody48, O. V. Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Urbino6, CERN7, Budker Institute of Nuclear Physics8, University of California, Irvine9, Cornell University10, Argonne National Laboratory11, ETH Zurich12, Tata Institute of Fundamental Research13, Hillsdale College14, Spanish National Research Council15, Ohio State University16, University of Notre Dame17, Kent State University18, University of California, San Diego19, University of California, Berkeley20, University of Minnesota21, University of Alabama22, University of Helsinki23, Los Alamos National Laboratory24, California Institute of Technology25, George Washington University26, Syracuse University27, Lawrence Livermore National Laboratory28, Oklahoma State University–Stillwater29, University of Washington30, Max Planck Society31, Boston University32, University of California, Los Angeles33, Royal Holloway, University of London34, Université Paris-Saclay35, University of Pennsylvania36, University of Illinois at Urbana–Champaign37, University of Bristol38, University of Tokyo39, University of Delaware40, Carnegie Mellon University41, University of California, Santa Cruz42, Karlsruhe Institute of Technology43, Heidelberg University44, Florida State University45, University of Mainz46, University of Edinburgh47, Brookhaven National Laboratory48, Durham University49, University of Lausanne50, Massachusetts Institute of Technology51, University of Southampton52, Nagoya University53, University of Oxford54, Northwestern University55, University of British Columbia56, Columbia University57, Lund University58, University of Sheffield59, University of California, Santa Barbara60, Iowa State University61, University of Alberta62, University of Cambridge63
TL;DR: This biennial Review summarizes much of Particle Physics using data from previous editions, plus 2205 new measurements from 667 papers, and features expanded coverage of CP violation in B mesons and of neutrino oscillations.
Abstract: This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the first time we cover searches for evidence of extra dimensions (both in the particle listings and in a new review). Another new review is on Grand Unified Theories. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

5,143 citations

Journal ArticleDOI
Koji Nakamura1, K. Hagiwara, Ken Ichi Hikasa2, Hitoshi Murayama3  +180 moreInstitutions (92)
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions, plus 2158 new measurements from 551 papers, they list, evaluate and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology.

2,788 citations

Journal Article
Oleg Zenin, Mark Srednicki, Kirill Slava Lugovsky, Donald E. Groom, Kenzo Nakamura, Klaus Mönig, Craig L Woody, G. Conforto, L. S. Littenberg, Patricia R. Burchat, Jonathan L. Feng, V. S. Lugovsky, JoAnne L. Hewett, John March-Russell, Thibault Damour, Michelangelo L. Mangano, S. Sánchez Navas, D. A. Edwards, Hans Jürg Gerber, German Valencia, L.J. Rosenberg, Marina Artuso, E. A. Razuvaev, Torbjörn Sjöstrand, E. L. Barberio, Ian Hinchliffe, H. Bichsel, Otmar Biebel, Luc Pape, Patricia A Kreitz, Michael H. Shaevitz, R. Cousins, C. D. Carone, Maury Goodman, L. A. Garren, Philippe Bloch, Charles G Wohl, A. Piepke, David M. Asner, K. Honscheid, Brian D. Fields, Matts Roos, Kaoru Hagiwara, Claude Amsler, Marco Battaglia, K. Hagiwara, D. Karlen, Robert Miquel, R. Landua, Christoph Grab, Alberto Masoni, G. Höhler, R. J. Donahue, Frederick J. Gilman, Ken Ichi Hikasa, Nils A. Tornqvist, I.G. Knowles, Richard Michael Barnett, Masaharu Tanabashi, Daniel Froidevaux, George F. Smoot, Lincoln Wolfenstein, Boris Kayser, Tatsuya Nakada, Konrad Kleinknecht, Orin I. Dahl, Thomas G Trippe, N. P. Tkachenko, Robert N. Cahn, Kenneth G. Hayes, B. Renk, Victor Daniel Elvira, Stefan Spanier, Ariella Cattai, Hitoshi Murayama, Paul Langacker, Petr Vogel, L. Rolandi, Yao Wei Ming, Kurtis F Johnson, Michael Whalley, Karl van Bibber, M. Suzuki, M. Aguilar-Benitez, Helen R. Quinn, Howard E. Haber, Achim Stahl, Todor Stanev, P. Igo-Kemenes, C. Patrignani, Jens Erler, C. A. Hagmann, D. Mark Manley, Masataka Fukugita, K. Desler, Michael T Ronan, V. V. Ezhela, L. K. Gibbons, K. S. Babu, Christopher Kolda, Juan Jose Hernández-Rey, John A. Peacock, Stuart Raby, Paolo Nason, Ron L. Workman, B. Foster, Meenakshi Narain, Glen D Cowan, John David Jackson, R. Sekhar Chivukula, Manuella Vincter, B. Armstrong, Michael Doser, John Terning, P. S. Gee, Craig J. Hogan, Yu V. Kuyanov, W. G. Seligman, W. Fetscher, D. R. Ward, S.I. Eidelman, Aneesh V. Manohar, A Fassò, Keith A. Olive, C. Caso, Thomas K. Gaisser, S. R. Klein, Georg G. Raffelt, Alan Douglas Martin, J. Womersley, Bryan R. Webber, H. Spieler, S. B. Lugovsky, Atul Gurtu, C Spooner 

2,092 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: MadGraph5 aMC@NLO as discussed by the authors is a computer program capable of handling all these computations, including parton-level fixed order, shower-matched, merged, in a unified framework whose defining features are flexibility, high level of parallelisation and human intervention limited to input physics quantities.
Abstract: We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling all these computations — parton-level fixed order, shower-matched, merged — in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e + e − collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

6,509 citations

Journal ArticleDOI
TL;DR: The Pythia program as mentioned in this paper can be used to generate high-energy-physics ''events'' (i.e. sets of outgoing particles produced in the interactions between two incoming particles).
Abstract: The Pythia program can be used to generate high-energy-physics ''events'', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.

6,300 citations

Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations

Journal ArticleDOI
TL;DR: A review of dark energy can be found in this paper, where the authors present the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.
Abstract: Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein's cosmological constant, \ensuremath{\Lambda}; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant \ensuremath{\Lambda}. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lema\^{\i}tre model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein--de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

4,783 citations