scispace - formally typeset
Search or ask a question
Author

K.I. Chang

Other affiliations: Philips, University of South Florida
Bio: K.I. Chang is an academic researcher from University of Notre Dame. The author has contributed to research in topics: Facial recognition system & Three-dimensional face recognition. The author has an hindex of 14, co-authored 19 publications receiving 4301 citations. Previous affiliations of K.I. Chang include Philips & University of South Florida.

Papers
More filters
Journal ArticleDOI
TL;DR: This survey focuses on recognition performed by matching models of the three-dimensional shape of the face, either alone or in combination with matching corresponding two-dimensional intensity images.

1,069 citations

Book ChapterDOI
01 Jan 1998
TL;DR: The Digital Database for Screening Mammography is a resource for use by researchers investigating mammogram image analysis, focused on the context of image analysis to aid in screening for breast cancer.
Abstract: The Digital Database for Screening Mammography1 is a resource for use by researchers investigating mammogram image analysis. In particular, the resource is focused on the context of image analysis to aid in screening for breast cancer. The database now contains substantial numbers of “normal” and “cancer” cases. This paper describes recent improvements and additions to DDSM.

694 citations

Journal ArticleDOI
TL;DR: It is found that recognition performance is not significantly different between the face and the ear, for example, 70.5 percent versus 71.6 percent in one experiment and multimodal recognition using both the ear and face results in statistically significant improvement over either individual biometric.
Abstract: Researchers have suggested that the ear may have advantages over the face for biometric recognition. Our previous experiments with ear and face recognition, using the standard principal component analysis approach, showed lower recognition performance using ear images. We report results of similar experiments on larger data sets that are more rigorously controlled for relative quality of face and ear images. We find that recognition performance is not significantly different between the face and the ear, for example, 70.5 percent versus 71.6 percent, respectively, in one experiment. We also find that multimodal recognition using both the ear and face results in statistically significant improvement over either individual biometric, for example, 90.9 percent in the analogous experiment.

597 citations

Journal ArticleDOI
TL;DR: The largest experimental study to date in multimodal 2D+3D face recognition, involving 198 persons in the gallery and either 198 or 670 time-lapse probe images, reaches major conclusions.
Abstract: We report on the largest experimental study to date in multimodal 2D+3D face recognition, involving 198 persons in the gallery and either 198 or 670 time-lapse probe images. PCA-based methods are used separately for each modality and match scores in the separate face spaces are combined for multimodal recognition. Major conclusions are: 1) 2D and 3D have similar recognition performance when considered individually, 2) combining 2D and 3D results using a simple weighting scheme outperforms either 2D or 3D alone, 3) combining results from two or more 2D images using a similar weighting scheme also outperforms a single 2D image, and 4) combined 2D+3D outperforms the multi-image 2D result. This is the first (so far, only) work to present such an experimental control to substantiate multimodal performance improvement.

470 citations

Journal ArticleDOI
TL;DR: This is the first approach to use multiple overlapping regions around the nose to handle the problem of expression variation and shows substantial improvement over matching the shape of a single larger frontal face region.
Abstract: An algorithm is proposed for 3D face recognition in the presence of varied facial expressions. It is based on combining the match scores from matching multiple overlapping regions around the nose. Experimental results are presented using the largest database employed to date in 3D face recognition studies, over 4,000 scans of 449 subjects. Results show substantial improvement over matching the shape of a single larger frontal face region. This is the first approach to use multiple overlapping regions around the nose to handle the problem of expression variation

397 citations


Cited by
More filters
Proceedings ArticleDOI
20 Jun 2005
TL;DR: The face recognition grand challenge (FRGC) is designed to achieve this performance goal by presenting to researchers a six-experiment challenge problem along with data corpus of 50,000 images.
Abstract: Over the last couple of years, face recognition researchers have been developing new techniques. These developments are being fueled by advances in computer vision techniques, computer design, sensor design, and interest in fielding face recognition systems. Such advances hold the promise of reducing the error rate in face recognition systems by an order of magnitude over Face Recognition Vendor Test (FRVT) 2002 results. The face recognition grand challenge (FRGC) is designed to achieve this performance goal by presenting to researchers a six-experiment challenge problem along with data corpus of 50,000 images. The data consists of 3D scans and high resolution still imagery taken under controlled and uncontrolled conditions. This paper describes the challenge problem, data corpus, and presents baseline performance and preliminary results on natural statistics of facial imagery.

2,595 citations

Journal ArticleDOI
TL;DR: The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus and is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Abstract: Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (" nodule�3 mm," " nodule<3 mm," and "non- nodule�3 mm "). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked " nodul�3 mm " by at least one radiologist, of which 928 (34.7) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice. © 2011 U.S. Government.

1,923 citations

BookDOI
31 Aug 2011
TL;DR: This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems, as well as offering challenges and future directions.
Abstract: This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems; provides comprehensive coverage of face detection, tracking, alignment, feature extraction, and recognition technologies, and issues in evaluation, systems, security, and applications; contains numerous step-by-step algorithms; describes a broad range of applications; presents contributions from an international selection of experts; integrates numerous supporting graphs, tables, charts, and performance data.

1,609 citations

Proceedings ArticleDOI
02 Sep 2009
TL;DR: This paper publishes a generative 3D shape and texture model, the Basel Face Model (BFM), and demonstrates its application to several face recognition task and publishes a set of detailed recognition and reconstruction results on standard databases to allow complete algorithm comparisons.
Abstract: Generative 3D face models are a powerful tool in computer vision. They provide pose and illumination invariance by modeling the space of 3D faces and the imaging process. The power of these models comes at the cost of an expensive and tedious construction process, which has led the community to focus on more easily constructed but less powerful models. With this paper we publish a generative 3D shape and texture model, the Basel Face Model (BFM), and demonstrate its application to several face recognition task. We improve on previous models by offering higher shape and texture accuracy due to a better scanning device and less correspondence artifacts due to an improved registration algorithm. The same 3D face model can be fit to 2D or 3D images acquired under different situations and with different sensors using an analysis by synthesis method. The resulting model parameters separate pose, lighting, imaging and identity parameters, which facilitates invariant face recognition across sensors and data sets by comparing only the identity parameters. We hope that the availability of this registered face model will spur research in generative models. Together with the model we publish a set of detailed recognition and reconstruction results on standard databases to allow complete algorithm comparisons.

1,265 citations

01 Jan 2003
TL;DR: Most widely used methods and techniques for skin color modelling and recognition are reviewed and their numerical evaluation results are collected.
Abstract: Skin color has proven to be a useful and robust cue for face detection, localization and tracking. Image content filtering, content-aware video compression and image color balancing applications can also benefit from automatic detection of skin in images. Numerous techniques for skin color modelling and recognition have been proposed during several past years. A few papers comparing different approaches have been published [Zarit et al. 1999], [Terrillon et al. 2000], [Brand and Mason 2000]. However, a comprehensive survey on the topic is still missing. We try to fill this vacuum by reviewing most widely used methods and techniques and collecting their numerical evaluation results.

1,155 citations