scispace - formally typeset
Search or ask a question
Author

K.J. Novo-Gradac

Bio: K.J. Novo-Gradac is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 1819 citations.

Papers
More filters
01 Mar 1991
TL;DR: The report describes how to use the MINTEQA2 model, a geochemical speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting, which includes an extensive database of reliable thermodynamic data.
Abstract: The attention of environmental decision makers is increasingly being focused on the movement of pollutants into ground water. Of particular importance is the transport and speciation of metals. The MINTEQA2 model is a versatile, quantitative tool for predicting the equilibrium behavior of metals in a variety of chemical environments. MINTEQA2 is a geochemical speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting. MINTEQA2 includes an extensive database of reliable thermodynamic data that is also accessible to PRODEFA2, an interactive program designed to be executed prior to MINTEQA2 for the purpose of creating the required MINTEQA2 input file. The report describes how to use the MINTEQA2 model. The chemical and mathematical structure of MINTEQA2 and the structure of the database files also are described. The use of both PRODEFA2 and MINTEQA2 are illustrated through the presentation of an example PRODEFA2 dialogue reproduced from interactive sessions and the presentation of MINTEQA2 output files and error diagnostics. The content and format of database files also are explained.

1,830 citations


Cited by
More filters
ReportDOI
TL;DR: PHREEQC as discussed by the authors is a C program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations.
Abstract: PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and onedimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solidsolution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits. New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

7,654 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sink.

1,482 citations

Journal ArticleDOI
TL;DR: The literature has been critically reviewed in order to assess the attenuation processes governing contaminants in leachate affected aquifers as discussed by the authors, focusing on dissolved organic matter, xenobiotic organic compounds, inorganic macrocomponents as anions and cations, and heavy metals.

1,195 citations

01 Jan 2001
TL;DR: The biotic ligand model of acute metal toxicity to aquatic organisms is based on the idea that mortality occurs when the metal-biotic ligand complex reaches a critical concentration, a generalization of the free ion activity model that relates toxicity to the concentration of the divalent metal cation.
Abstract: The biotic ligand model (BLM) of acute metal toxicity to aquatic organisms is based on the idea that mortality occurs when the metal-biotic ligand complex reaches a critical concentration. For fish, the biotic ligand is either known or suspected to be the sodium or calcium channel proteins in the gill surface that regulate the ionic composition of the blood. For other organisms, it is hypothesized that a biotic ligand exists and that mortality can be modeled in a similar way. The biotic ligand interacts with the metal cations in solution. The amount of metal that binds is determined by a competition for metal ions between the biotic ligand and the other aqueous ligands, particularly dissolved organic matter (DOM), and the competition for the biotic ligand between the toxic metal ion and the other metal cations in solution, for example, calcium. The model is a generalization of the free ion activity model that relates toxicity to the concentration of the divalent metal cation. The difference is the presence of competitive binding at the biotic ligand, which models the protective effects of other metal cations, and the direct influence of pH. The model is implemented using the Windermere humic aqueous model (WHAM) model of metal-DOM complexation. It is applied to copper and silver using gill complexation constants reported by R. Playle and coworkers. Initial application is made to the fathead minnow data set reported by R. Erickson and a water effects ratio data set by J. Diamond. The use of the BLM for determining total maximum daily loadings (TMDLs) and for regional risk assessments is discussed within a probabilistic framework. At first glance, it appears that a large amount of data are required for a successful application. However, the use of lognormal probability distributions reduces the required data to a manageable amount. Keywords—Bioavailability Metal toxicity Metal complexation Risk assessment

1,180 citations

Journal ArticleDOI
TL;DR: This poster presents a probabilistic procedure to constrain the number of particles in the response of the immune system to the presence of Tau.
Abstract: Reference LPI-ARTICLE-1999-017View record in Web of Science Record created on 2006-02-21, modified on 2017-05-12

966 citations