scispace - formally typeset
Search or ask a question
Author

K. Kundu

Bio: K. Kundu is an academic researcher from Council of Scientific and Industrial Research. The author has contributed to research in topics: Biodiesel & Diesel fuel. The author has an hindex of 11, co-authored 25 publications receiving 356 citations. Previous affiliations of K. Kundu include Academy of Scientific and Innovative Research & Guru Nanak Dev Engineering College, Bidar.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of process parameters such as molar ratio, preheating temperature, catalyst concentration and reaction time was studied to standardize the transesterification process for estimating the highest recovery of ester with lowest possible viscosity.
Abstract: The present work aimed at the standardization of transesterification process parameters for the production of methyl ester of filtered neem oil and fuel characterization for engine performance. The effect of process parameters such as molar ratio, preheating temperature, catalyst concentration and reaction time was studied to standardize the transesterification process for estimating the highest recovery of ester with lowest possible viscosity. Based on the observations of the ester recovery and kinematic viscosity, it was found that filtered neem oil at 6:1 M ratio (methanol to oil) preheated at 55 °C temperature and maintaining 60 °C reaction temperature for 60 min in the presence of 2 percent KOH and then allowed to settle for 24 h in order to get lowest kinematic viscosity (2.7 cSt) with ester recovery (83.36%). Different fuel properties of the neem methyl ester and neem oil were also measured. Results show that the methyl ester of neem obtained under the optimum condition is an excellent substitute for fossil fuels.

96 citations

Journal ArticleDOI
TL;DR: In this article, the optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 ¼wt% of zinc doped calcium oxide.
Abstract: In the present work, the optimum biodiesel conversion from waste cooking oil to biodiesel through transesterification method was investigated. The base catalyzed transesterification under different reactant proportions such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of biodiesel. The optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 wt% of zinc doped calcium oxide. The fuel properties of the produced biodiesel such as the calorific value, flash point and density were examined and compared to conventional diesel. The properties of produced biodiesel and their blend for different ratios (B20, B40, B60, B80 and B100) were comparable with properties of diesel oil and ASTM biodiesel standards. Tests have been conducted on CI engine which runs at a constant speed of 1500 rpm, injection pressure of 200 bar, compression ratio 15:1 and 17.5, and varying engine load. The performance parameters include brake thermal efficiency, brake specific energy consumption and emissions parameters such as Carbon monoxide (CO), Hydrocarbon (HC), Oxides of Nitrogen (NOx) and smoke opacity varying with engine load (BP). Diesel engine's thermal performance and emission parameters such as CO, HC, and NOx on different biodiesel blends demonstrate that biodiesel produced from waste cooking oil using heterogeneous catalyst was suitable to be used as diesel oil blends and had lesser emissions as compared to conventional diesel.

83 citations

Journal ArticleDOI
TL;DR: In this paper, a compression ignition (CI) engine was used to produce algal biodiesel from the oil of unused algae by a two-step "acid esterification followed by transesterification" procedure, achieving a biodiesel production of 89.7% with free fatty acid content of 0.25%.

72 citations

Book ChapterDOI
01 Jan 2018
TL;DR: In this article, the characteristics of generic types of reactors used to carry out thermal decomposition are described with their special features, advantages, and disadvantages, and it has been discussed how the variations in composition of biomass at optimized process flow differ the quality and quantity of potential product yields.
Abstract: Increasing global energy demand is being substantially contributed by the bioenergy sector. For the rural communities, bioenergy provides opportunities for social and economic development by improving the waste and other resource management. The contribution of bioenergy proves to be significant in terms of maintaining social, economic as well as environmental health, ensuring energy security. Biomass, when converted to bioenergy, may undergo different suitable processes. Thermochemical conversions are no exception. The process technologies include combustion, torrefaction, pyrolysis, and gasification. All these processes having the common backbone of thermal decomposition are optimized by different factors and yield specific products of different states such as solid, liquid, and gases. The characteristics of generic types of reactors used to carry out such processes are described with their special features, advantages, and disadvantages. Though researches have called for three types of possible biomass for conversion such as lipid, sugar/starch, and lignocellulose in the present chapter, conversion of lignocellulosic biomass feedstock is focused. It has been discussed how the variations in composition of biomass at optimized process flow differ the quality and quantity of potential product yields.

43 citations

Journal ArticleDOI
TL;DR: In this article, the main aim of the experimental work is to optimize the process parameters, namely the methanol-to-oil molar ratio, catalyst concentration, reaction time and reaction temperature for biodiesel production.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed review has been conducted to highlight different related aspects to the biodiesel industry, including, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodies, the economical viability and finally the future of the future biodiesel.
Abstract: As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum , and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production. It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.

1,496 citations

Journal ArticleDOI
TL;DR: The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source as mentioned in this paper, however, edible oils’ feedstock costs are far expensive to be used as fuel.
Abstract: World energy demand is expected to increase due to the expanding urbanization, better living standards and increasing population. At a time when society is becoming increasingly aware of the declining reserves of fossil fuels beside the environmental concerns, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. There are different potential feedstocks for biodiesel production. Non-edible vegetable oils which are known as the second generation feedstocks can be considered as promising substitutions for traditional edible food crops for the production of biodiesel. The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source. Moreover, edible oils’ feedstock costs are far expensive to be used as fuel. Therefore, production of biodiesel from non-edible oils is an effective way to overcome all the associated problems with edible oils. However, the potential of converting non-edible oil into biodiesel must be well examined. This is because physical and chemical properties of biodiesel produced from any feedstock must comply with the limits of ASTM and DIN EN specifications for biodiesel fuels. This paper introduces non-edible vegetable oils to be used as biodiesel feedstocks. Several aspects related to these feedstocks have been reviewed from various recent publications. These aspects include overview of non-edible oil resources, advantages of non-edible oils, problems in exploitation of non-edible oils, fatty acid composition profiles (FAC) of various non-edible oils, oil extraction techniques, technologies of biodiesel production from non-edible oils, biodiesel standards and characterization, properties and characteristic of non-edible biodiesel and engine performance and emission production. As a conclusion, it has been found that there is a huge chance to produce biodiesel from non-edible oil sources and therefore it can boost the future production of biodiesel.

1,017 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduced some species of non-edible vegetables whose oils are potential sources of biodiesel, such as Pongamia pinnata (karanja), Calophyllum inophyllus (Polanga), Maduca indica (mahua), Hevea brasiliensis (rubber seed), Cotton seed, Simmondsia chinesnsis (Jojoba), Nicotianna tabacum (tobacco), Azadirachta indica, Linum usitatissimum (Linseed)

481 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the possibilities of the use of non-edible oils into biodiesel production, to consider the various methods for treatment of nonedible plant oils and to emphasize the influence of the operating and reaction conditions on the process rate and the ester yield.
Abstract: Because of biodegradability and nontoxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification of triacylglycerols. From economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstocks for biodiesel production such as non-edible plant oils. This paper reviews various methods for biodiesel production from common non-edible oils employing alcoholysis reactions. The aim of this paper is to present the possibilities of the use of non-edible oils into biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasize the influence of the operating and reaction conditions on the process rate and the ester yield. The special attention is paid to the possibilities of optimization, kinetics and improvement of biodiesel production from non-edible oils.

431 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the literature from most recent articles on nanoparticles as a liquid fuel additive and discussed the effect of dispersion of several nanoparticles on the enhancement in the performance characteristics and reduction in emission of a CI engine fuelled with diesel-biodiesel blends.

311 citations