scispace - formally typeset
Search or ask a question
Author

K. M. Dieter

Bio: K. M. Dieter is an academic researcher from United States Air Force Academy. The author has contributed to research in topics: Polarizability & Dipole. The author has an hindex of 1, co-authored 1 publications receiving 686 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a finite field method for the calculation of polarizabilities and hyperpolarizabilities is developed based on both an energy expansion and a dipole moment expansion, implemented in the MOPAC semiempirical program.
Abstract: : A finite field method for the calculation of polarizabilities and hyperpolarizabilities is developed based on both an energy expansion and a dipole moment expansion. This procedure is implemented in the MOPAC semiempirical program. Values and components of the dipole moment (mu), polarizability (alpha), first hyperpolarizability (beta), and second hyperpolarizability (gamma) are calculated as an extension of the usual MOPAC run. Applications to benzene and substituted benzenes are shown as test cases utilizing both MNDO and AM1 Hamiltonians.

729 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A description of the ab initio quantum chemistry package GAMESS, which can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication.
Abstract: A description of the ab initio quantum chemistry package GAMESS is presented. Chemical systems containing atoms through radon can be treated with wave functions ranging from the simplest closed-shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication. Emphasis is given to novel features of the program. The parallelization strategy used in the RHF, ROHF, UHF, and GVB sections of the program is described, and detailed speecup results are given. Parallel calculations can be run on ordinary workstations as well as dedicated parallel machines. © John Wiley & Sons, Inc.

18,546 citations

Book ChapterDOI
01 Jan 2005
TL;DR: GAMESS as discussed by the authors is a suite of electronic structure and QM/MM methods (including open-and closed-shell Hartree-Fock which has been essentially ignored here) that can be run on virtually any computer, cluster, massively parallel system or for that matter a desktop Mac or PC.
Abstract: Publisher Summary This chapter focuses on the new developments in electronic structure theory during the past decade. These developments include new methods in quantum mechanics, including approaches for extrapolating to the full CI and complete basis set limits, novel methods for CASSCF calculations, new coupled cluster techniques, methods for evaluating non-adiabatic and relativistic interactions, new approaches for distributed parallel computing, and QM/MM methods for describing solvent effects and surface science. It is useful to note in this regard that GAMESS is a general-purpose suite of electronic structure and QM/MM methods (including open-and closed-shell Hartree–Fock which has been essentially ignored here) that can be run on virtually any computer, cluster, massively parallel system, or for that matter a desktop Mac or PC. Indeed, GAMESS is used at many universities as an educational tool, making use of its graphical back end MacMolPlt. GAMESS and MacMolPlt can be downloaded at no cost from www.msg.ameslab.gov, with only a simple license required.

1,474 citations

Journal ArticleDOI
TL;DR: Applications of quantum chemical descriptors in the development of QSAR/QSPR dealing with the chemical, physical, biochemical, and pharmacological properties of compounds are reviewed.
Abstract: Quantitative structure-activity and structureproperty relationship (QSAR/QSPR) studies are unquestionably of great importance in modern chemistry and biochemistry. The concept of QSAR/QSPR is to transform searches for compounds with desired properties using chemical intuition and experience into a mathematically quantified and computerized form. Once a correlation between structure and activity/property is found, any number of compounds, including those not yet synthesized, can be readily screened on the computer in order to select structures with the properties desired. It is then possible to select the most promising compounds to synthesize and test in the laboratory. Thus, the QSAR/QSPR approach conserves resources and accelerates the process of development of new molecules for use as drugs, materials, additives, or for any other purpose. While it is not easy to find successful structureactivity/property correlations, the recent exponential growth in the number of papers dealing with QSAR/ QSPR studies clearly demonstrates the rapid progress in this area. To obtain a significant correlation, it is crucial that appropriate descriptors be employed, whether they are theoretical, empirical, or derived from readily available experimental characteristics of the structures. Many descriptors reflect simple molecular properties and thus can provide insight into the physicochemical nature of the activity/ property under consideration. Recent progress in computational hardware and the development of efficient algorithms has assisted the routine development of molecular quantummechanical calculations. New semiempirical methods supply realistic quantum-chemical molecular quantities in a relatively short computational time frame. Quantum chemical calculations are thus an attractive source of new molecular descriptors, which can, in principle, express all of the electronic and geometric properties of molecules and their interactions. Indeed, many recent QSAR/QSPR studies have employed quantum chemical descriptors alone or in combination with conventional descriptors. Quantum chemistry provides a more accurate and detailed description of electronic effects than empirical methods.1 Quantum chemical methods can be applied to quantitative structure-activity relationships by direct derivation of electronic descriptors from the molecular wave function. In many cases it has been established that errors due to the approximate nature of quantum-chemical methods and the neglect of the solvation effects are largely transferable within structurally related series; thus, relative values of calculated descriptors can be meaningful even though their absolute values are not directly applicable.2 Moreover, electronic descriptors derived from the molecular wave function can be also partitioned on the basis of atoms or groups, allowing the description of various molecular regions separately. Most work employing quantum chemical descriptors has been carried out in the field of QSAR rather than QSPR, i.e. the descriptors have been correlated with biological activities such as enzyme inhibition activity, hallucinogenic activity, etc.3-6 In part this has been because, historically, the search for quantitative relationships with chemical structure started with the development of theoretical drug design methods. Quantum-chemical descriptors have also been reported to correlate the reactivity of organic compounds, octanol/water partition coefficients, chromatographic retention indices, and various physical properties of molecules.7-11 The present article reviews applications of quantum chemical descriptors in the development of QSAR/QSPR dealing with the chemical, physical, biochemical, and pharmacological properties of compounds.

1,301 citations

Journal ArticleDOI
TL;DR: In this paper, four commonly used conventions are discussed and simple factors for converting between them presented, and the sum-over-states expression for the calculation of β and γ is described and its correct use in comparing with hyperpolarizabilities obtained using other experimental and theoretical techniques discussed.
Abstract: Frequently it is useful to compare experimental values of the hyperpolarizabilities β and γ with calculated values. It is also often helpful to compare experimental values of β obtained from dc‐electric field induced second harmonic generation (dc‐SHG) experiments, e.g., with values obtained using the solvatochromism method. In order to do this the hyperpolarizabilities must be defined using consistent conventions. In this paper, four commonly used conventions are discussed and simple factors for converting between them presented. In addition, the sum‐over‐states expression for the calculation of β and γ is described and its correct use in comparing with hyperpolarizabilities obtained using other experimental and theoretical techniques discussed. As an illustration of the consistent use of conventions, ab initio and semiempirical calculations on para‐nitroaniline are compared with experimental dc‐SHG values. This comparison highlights the difference between theoretical values of the hyperpolarizability with the molecule in a gas phase environment and experimental values obtained in polar solvents−a difference that has in the past been obscured by inconsistent choice of conventions.

589 citations