scispace - formally typeset
Search or ask a question
Author

K. M. Sreekanth

Bio: K. M. Sreekanth is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 308 citations.

Papers
More filters
01 Jan 2013
TL;DR: In this article, the authors discuss p-type ZnO materials: theory, growth, properties and devices, comprehensively, and summarize the growth techniques for p- type ZnOs.
Abstract: Abstract In the past 10 years, ZnO as a semiconductor has attracted considerable attention due to its unique properties, such as high electron mobility, wide and direct band gap and large exciton binding energy. ZnO has been considered a promising material for optoelectronic device applications, and the fabrications of high quality p-type ZnO and p–n junction are the key steps to realize these applications. However, the reliable p-type doping of the material remains a major challenge because of the self-compensation from native donor defects (V O and Zn i ) and/or hydrogen incorporation. Considerable efforts have been made to obtain p-type ZnO by doping different elements with various techniques. Remarkable progresses have been achieved, both theoretically and experimentally. In this paper, we discuss p-type ZnO materials: theory, growth, properties and devices, comprehensively. We first discuss the native defects in ZnO. Among the native defects in ZnO, V Zn and O i act as acceptors. We then present the theory of p-type doping in ZnO, and summarize the growth techniques for p-type ZnO and the properties of p-type ZnO materials. Theoretically, the principles of selection of p-type dopant, codoping method and X Zn –2V Zn acceptor model are introduced. Experimentally, besides the intrinsic p-type ZnO grown at O-rich ambient, p-type ZnO (MgZnO) materials have been prepared by various techniques using Group-I, IV and V elements. We pay a special attention to the band gap of p-type ZnO by band-gap engineering and room temperature ferromagnetism observed in p-type ZnO. Finally, we summarize the devices based on p-type ZnO materials.

308 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the performance of zinc oxide (ZnO) has been improved by tailoring its surface-bulk structure and altering its photogenerated charge transfer pathways with an intention to inhibit the surfacebulk charge carrier recombination.
Abstract: As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion–dissolution at extreme pH conditions, together with the formation of inert Zn(OH)2 during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

643 citations

Journal ArticleDOI
TL;DR: In this article, the effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically.

509 citations

Journal Article
TL;DR: Based on advanced first-principles calculations, this paper found that nitrogen is actually a deep acceptor, with an exceedingly high ionization energy of 1.3 eV, and hence cannot lead to hole conductivity in ZnO.
Abstract: Based on electronic structure and atomic size considerations, nitrogen has been regarded as the most suitable impurity for p-type doping in ZnO. However, numerous experimental efforts by many different groups have not resulted in stable and reproducible p-type material, casting doubt on the efficacy of nitrogen as a shallow acceptor. Based on advanced first-principles calculations we find that nitrogen is actually a deep acceptor, with an exceedingly high ionization energy of 1.3 eV, and hence cannot lead to hole conductivity in ZnO. In light of this result, we reexamine prior experiments on nitrogen doping of ZnO.

315 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+-based oxides), and post-transition metal oxides with lone pair state (ns (2).
Abstract: Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

311 citations

Journal ArticleDOI
TL;DR: A comprehensive summary of the recent progress mainly on photodetectors based on inorganic p-type semiconductor materials is presented.
Abstract: Photoelectric detectors are the central part of modern photodetection systems with numerous commercial and scientific applications. p-Type semiconductor materials play important roles in optoelectronic devices. Photodetectors based on p-type semiconductor materials have attracted a great deal of attention in recent years because of their unique properties. Here, a comprehensive summary of the recent progress mainly on photodetectors based on inorganic p-type semiconductor materials is presented. Various structures, including photoconductors, phototransistors, homojunctions, heterojunctions, p-i-n junctions, and metal-semiconductor junctions of photodetectors based on inorganic p-type semiconductor materials, are discussed and summarized. Perspectives and an outlook, highlighting the promising future directions of this research field, are also given.

290 citations