scispace - formally typeset
Search or ask a question
Author

K.N. Srinivasan

Bio: K.N. Srinivasan is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Jet (fluid) & Mach number. The author has an hindex of 20, co-authored 175 publications receiving 1506 citations. Previous affiliations of K.N. Srinivasan include Periyar University & Sri Ramakrishna Engineering College.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that strong correlation between slowing and loss of complexity is observed in two independent EEG datasets, and relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects.
Abstract: Medical studies have shown that EEG of Alzheimer's disease (AD) patients is “slower” (i.e., contains more low-frequency power) and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1) EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI) and control subjects; (2) EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony), classification rates of 83% (MCI) and 98% (MiAD) are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone.

165 citations

Journal ArticleDOI
TL;DR: The authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controller has been used to control the non linear process.
Abstract: In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

85 citations

Journal ArticleDOI
TL;DR: A review of the development of the Hartmann tube from discovery to recent advances in understanding, prediction and application of the resonance tube can be found in this paper, where Hartmann demonstrated the possibility of obtaining high acoustic efficiencies when a jet is aimed at the open end of a tube closed at the other end.

68 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have reported on the development of a biodegradable electroless Ni-B bath and evaluated its characteristic properties, and the influence of bath constituents, temperature and pH on the rate of deposition was studied.
Abstract: Electroless deposition process has undergone numerous changes to meet the challenging needs for a variety of industrial applications ever since the invention of the process during 1947. Among the various metals that can be electrolessly plated, electroless nickel has proved its supremacy for producing coatings with high corrosion resistance, hardness, wear resistance and uniformity. Electroless nickel can be deposited from a variety of baths and the coating properties depends upon the type of reducing agents and other deposition conditions. Electroless nickel–boron coatings have received considerable interest nowadays because of the superior hardness, corrosion and wear resistance characteristics. In this paper, the authors have reported on the development of a biodegradable electroless Ni–B bath and evaluated its characteristic properties. The influence of bath constituents, temperature and pH on the rate of deposition was studied. Scanning electron microscopy, X-ray diffraction, X-ray fluoresce...

67 citations

Journal ArticleDOI
TL;DR: The asymmetrical relay feedback method is modified to get improved parameters estimates of a first order plus time delay transfer function model and gives closed loop ISE values similar to that of the actual system.

52 citations


Cited by
More filters
Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

Book ChapterDOI
01 Jan 2010
TL;DR: In this article, the assumption of Gaussianity for the measurement error combined with the maximum likelihood principle could be emphasized to promote the least square criterion for nonlinear regression problems; considering classification as a regression problem towards estimating class posterior probabilities, least squares has been employed to train neural network and other classifier topologies to approximate correct labels.
Abstract: INTRODUCTION Learning systems depend on three interrelated components: topologies, cost/performance functions, and learning algorithms. Topologies provide the constraints for the mapping, and the learning algorithms offer the means to find an optimal solution; but the solution is optimal with respect to what? Optimality is characterized by the criterion and in neural network literature, this is the least addressed component, yet it has a decisive influence in generalization performance. Certainly, the assumptions behind the selection of a criterion should be better understood and investigated. Traditionally, least squares has been the benchmark criterion for regression problems; considering classification as a regression problem towards estimating class posterior probabilities, least squares has been employed to train neural network and other classifier topologies to approximate correct labels. The main motivation to utilize least squares in regression simply comes from the intellectual comfort this criterion provides due to its success in traditional linear least squares regression applications – which can be reduced to solving a system of linear equations. For nonlinear regression, the assumption of Gaussianity for the measurement error combined with the maximum likelihood principle could be emphasized to promote this criterion. In nonparametric regression, least squares principle leads to the conditional expectation solution, which is intuitively appealing. Although these are good reasons to use the mean squared error as the cost, it is inherently linked to the assumptions and habits stated above. Consequently, there is information in the error signal that is not captured during the training of nonlinear adaptive systems under non-Gaussian distribution conditions when one insists on secondorder statistical criteria. This argument extends to other linear-second-order techniques such as principal component analysis (PCA), linear discriminant analysis (LDA), and canonical correlation analysis (CCA). Recent work tries to generalize these techniques to nonlinear scenarios by utilizing kernel techniques or other heuristics. This begs the question: what other alternative cost functions could be used to train adaptive systems and how could we establish rigorous techniques for extending useful concepts from linear and second-order statistical techniques to nonlinear and higher-order statistical learning methodologies?

615 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the tribological advancement of different electroless nickel coatings based on the bath types, structure and also the tribo testing parameters in recent years.

477 citations

Journal ArticleDOI
TL;DR: A supervised LSTM (SLSTM) network is proposed to learn quality-relevant hidden dynamics for soft sensor application, which is composed of basic SLSTM unit at each sampling instant.
Abstract: Soft sensor has been extensively utilized in industrial processes for prediction of key quality variables. To build an accurate virtual sensor model, it is very significant to model the dynamic and nonlinear behaviors of process sequential data properly. Recently, a long short-term memory (LSTM) network has shown great modeling ability on various time series, in which basic LSTM units can handle data nonlinearities and dynamics with a dynamic latent variable structure. However, the hidden variables in the basic LSTM unit mainly focus on describing the dynamics of input variables, which lack representation for the quality data. In this paper, a supervised LSTM (SLSTM) network is proposed to learn quality-relevant hidden dynamics for soft sensor application, which is composed of basic SLSTM unit at each sampling instant. In the basic SLSTM unit, the quality and input variables are simultaneously utilized to learn the dynamic hidden states, which are more relevant and useful for quality prediction. The effectiveness of the proposed SLSTM network is demonstrated on a penicillin fermentation process and an industrial debutanizer column.

320 citations

Journal ArticleDOI
TL;DR: A generalization of the error entropy criterion that enables the use of any order of Renyi's entropy and any suitable kernel function in density estimation is proposed and shown that the proposed entropy estimator preserves the global minimum of actual entropy.
Abstract: We have previously proposed the quadratic Renyi's error entropy as an alternative cost function for supervised adaptive system training. An entropy criterion instructs the minimization of the average information content of the error signal rather than merely trying to minimize its energy. In this paper, we propose a generalization of the error entropy criterion that enables the use of any order of Renyi's entropy and any suitable kernel function in density estimation. It is shown that the proposed entropy estimator preserves the global minimum of actual entropy. The equivalence between global optimization by convolution smoothing and the convolution by the kernel in Parzen windowing is also discussed. Simulation results are presented for time-series prediction and classification where experimental demonstration of all the theoretical concepts is presented.

245 citations