scispace - formally typeset
Search or ask a question
Author

K Rockett

Bio: K Rockett is an academic researcher from Wellcome Trust Centre for Human Genetics. The author has contributed to research in topics: Population & Haplotype. The author has an hindex of 11, co-authored 13 publications receiving 954 citations.

Papers
More filters
Journal ArticleDOI
15 Jan 2015-Nature
TL;DR: It is shown that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa.
Abstract: Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

482 citations

Journal ArticleDOI
TL;DR: The results suggest that the mechanism for disease susceptibility to RSV-induced bronchiolitis may occur through a haplotype-specific increase in IL-8 transcription, which may be mediated by functional polymorphisms within that haplotype.
Abstract: Interleukin-8 (IL-8) has been implicated in the pathogenesis of RSV-induced bronchiolitis. Previously, we have described an association between bronchiolitis disease severity and a specific IL-8 haplotype comprising six single-nucleotide polymorphisms (SNPs) (-251A/+396G/+781T/+1238delA/+1633T/+2767T, haplotype 2). Here we investigated the functional basis for this association by measuring haplotype-specific transcription in vivo in human primary cells. We found a significant increase in transcript level derived from the IL-8 haplotype 2 relative to the mirror haplotype 1 (-251T/+396T/+781C/+1238insA/+1633C/+2767A) in respiratory epithelial cells but not in lymphocytes. A promoter polymorphism, -251A, present on the high producer haplotype, had no significant affect on the allele-specific level of transcription when analyzed in reporter gene experiments in human respiratory epithelial A549 cells. We proceeded to systematically screen for allele-specific protein-DNA binding in this functional haplotype, which revealed significant differential binding at the +781T/C polymorphism. C/EBP beta was identified as being part of a transcription factor binding complex that preferentially bound in the presence of the +781 T allele. These results suggest that the mechanism for disease susceptibility to RSV-induced bronchiolitis may occur through a haplotype-specific increase in IL-8 transcription, which may be mediated by functional polymorphisms within that haplotype.

144 citations

Journal ArticleDOI
TL;DR: Multivariate conditional logistic regression analysis identified IL10 and IFNγ SNP haplotypes associated with increased risk of both trachomatous scarring and trichiasis and identified SNPs in putativeIFNγ and IL10 regulatory regions lay within the disease-associated haplotypes.
Abstract: Experimental evidence implicates interferon gamma (IFNgamma) in protection from and resolution of chlamydial infection. Conversely, interleukin 10 (IL10) is associated with susceptibility and persistence of infection and pathology. We studied genetic variation within the IL10 and IFNgamma loci in relation to the risk of developing severe complications of human ocular Chlamydia trachomatis infection. A total of 651 Gambian subjects with scarring trachoma, of whom 307 also had potentially blinding trichiasis and pair-matched controls with normal eyelids, were screened for associations between single-nucleotide polymorphisms (SNPs), SNP haplotypes and the risk of disease. MassEXTEND (Sequenom) and MALDI-TOF mass spectrometry were used for detection and analysis of SNPs and the programs PHASE and SNPHAP used to infer haplotypes from population genetic data. Multivariate conditional logistic regression analysis identified IL10 and IFNgamma SNP haplotypes associated with increased risk of both trachomatous scarring and trichiasis. SNPs in putative IFNgamma and IL10 regulatory regions lay within the disease-associated haplotypes. The IFNgamma +874A allele, previously linked to lower IFNgamma production, lies in the IFNgamma risk haplotype and was more common among cases than controls, but not significantly so. The promoter IL10-1082G allele, previously associated with high IL10 expression, is in both susceptibility and resistance haplotypes.

66 citations

Journal ArticleDOI
TL;DR: Findings raise the question of whether IL10 associations with severe malaria might be confounded by foetal survival rates or other sources of transmission bias, and identify five informative SNPs in the Gambian population.
Abstract: We investigated the association between severe malaria and genetic variation of IL10 in Gambian children, as several lines of evidence indicate that IL10 is protective against severe malaria and that IL10 production is genetically determined. We began by identifying five informative SNPs in the Gambian population that were genotyped in a combined case-control and intrafamilial study including 654 cases of severe malaria, 579 sets of parents and 459 ethnically matched controls. No significant associations were identified with individual SNPs. One haplotype of frequency 0.11 was strongly associated with protection against severe malaria in the case-control analysis (odds ratio 0.52, P=0.00002), but the transmission disequilibrium test in families showed no significant effect. These findings raise the question of whether IL10 associations with severe malaria might be confounded by foetal survival rates or other sources of transmission bias.

65 citations

Journal ArticleDOI
TL;DR: TNF-308A may determine directly, or be a marker of a high TNF producer phenotype associated with increased risk of sequelae of chlamydial infection, and Multivariate analysis provided evidence for the presence of additional risk-associated variants near the TNF locus.
Abstract: Tumor necrosis factor (TNF) is thought to be a key mediator of the inflammatory and fibrotic response to Chlamydia trachomatis (Ct) infection. A large matched-pair case-control study investigated putative functional single nucleotide polymorphisms (SNPs) across the major histocompatibility complex (MHC) class III region, including TNF and its immediate neighbors nuclear factor of kappa light polypeptide gene enhancer in B cells (IkappaBL), inhibitor like 1 and lymphotoxin alpha (LTA) in relation to the risk of scarring sequelae of ocular Ct infection. Haplotype and linkage disequilibrium analysis demonstrated two haplotypes, differing at position TNF-308, conferring an increased risk of trichiasis. The TNF-308A allele, and its bearing haplotype, correlated with increased TNF production in lymphocyte cultures stimulated with chlamydial elementary body antigen. Thus TNF-308A may determine directly, or be a marker of a high TNF producer phenotype associated with increased risk of sequelae of chlamydial infection. Multivariate analysis provided evidence for the presence of additional risk-associated variants near the TNF locus.

60 citations


Cited by
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
Shane A. McCarthy1, Sayantan Das2, Warren W. Kretzschmar3, Olivier Delaneau4, Andrew R. Wood5, Alexander Teumer6, Hyun Min Kang2, Christian Fuchsberger2, Petr Danecek1, Kevin Sharp3, Yang Luo1, C Sidore7, Alan Kwong2, Nicholas J. Timpson8, Seppo Koskinen, Scott I. Vrieze9, Laura J. Scott2, He Zhang2, Anubha Mahajan3, Jan H. Veldink, Ulrike Peters10, Ulrike Peters11, Carlos N. Pato12, Cornelia M. van Duijn13, Christopher E. Gillies2, Ilaria Gandin14, Massimo Mezzavilla, Arthur Gilly1, Massimiliano Cocca14, Michela Traglia, Andrea Angius7, Jeffrey C. Barrett1, D.I. Boomsma15, Kari Branham2, Gerome Breen16, Gerome Breen17, Chad M. Brummett2, Fabio Busonero7, Harry Campbell18, Andrew T. Chan19, Sai Chen2, Emily Y. Chew20, Francis S. Collins20, Laura J Corbin8, George Davey Smith8, George Dedoussis21, Marcus Dörr6, Aliki-Eleni Farmaki21, Luigi Ferrucci20, Lukas Forer22, Ross M. Fraser2, Stacey Gabriel23, Shawn Levy, Leif Groop24, Leif Groop25, Tabitha A. Harrison11, Andrew T. Hattersley5, Oddgeir L. Holmen26, Kristian Hveem26, Matthias Kretzler2, James Lee27, Matt McGue28, Thomas Meitinger29, David Melzer5, Josine L. Min8, Karen L. Mohlke30, John B. Vincent31, Matthias Nauck6, Deborah A. Nickerson10, Aarno Palotie19, Aarno Palotie23, Michele T. Pato12, Nicola Pirastu14, Melvin G. McInnis2, J. Brent Richards16, J. Brent Richards32, Cinzia Sala, Veikko Salomaa, David Schlessinger20, Sebastian Schoenherr22, P. Eline Slagboom33, Kerrin S. Small16, Tim D. Spector16, Dwight Stambolian34, Marcus A. Tuke5, Jaakko Tuomilehto, Leonard H. van den Berg, Wouter van Rheenen, Uwe Völker6, Cisca Wijmenga35, Daniela Toniolo, Eleftheria Zeggini1, Paolo Gasparini14, Matthew G. Sampson2, James F. Wilson18, Timothy M. Frayling5, Paul I.W. de Bakker36, Morris A. Swertz35, Steven A. McCarroll19, Charles Kooperberg11, Annelot M. Dekker, David Altshuler, Cristen J. Willer2, William G. Iacono28, Samuli Ripatti25, Nicole Soranzo27, Nicole Soranzo1, Klaudia Walter1, Anand Swaroop20, Francesco Cucca7, Carl A. Anderson1, Richard M. Myers, Michael Boehnke2, Mark I. McCarthy3, Mark I. McCarthy37, Richard Durbin1, Gonçalo R. Abecasis2, Jonathan Marchini3 
TL;DR: A reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies.
Abstract: We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.

2,149 citations

Shane A. McCarthy, Sayantan Das, Warren W. Kretzschmar, Olivier Delaneau, Andrew R. Wood, Alexander Teumer, Hyun Min Kang, Christian Fuchsberger, Petr Danecek, Kevin Sharp, Yang Luo, Carlo Sidorel, Alan Kwong, Nicholas J. Timpson, Seppo Koskinen, Scott I. Vrieze, Laura J. Scott, He Zhang, Anubha Mahajan, Jan H. Veldink, Ulrike Peters, Carlos N. Pato, Cornelia M. van Duijn, Christopher E. Gillies, Ilaria Gandin, Massimo Mezzavilla, Arthur Gilly, Massimiliano Cocca, Michela Traglia, Andrea Angius, Jeffrey C. Barrett, D.I. Boomsma, Kari Branham, Gerome Breen, Chad M. Brummett, Fabio Busonero, Harry Campbell, Andrew T. Chan, Sai Che, Emily Y. Chew, Francis S. Collins, Laura J Corbin, George Davey Smith, George Dedoussis, Marcus Dörr, Aliki-Eleni Farmaki, Luigi Ferrucci, Lukas Forer, Ross M. Fraser, Stacey Gabriel, Shawn Levy, Leif Groop, Tabitha A. Harrison, Andrew T. Hattersley, Oddgeir L. Holmen, Kristian Hveem, Matthias Kretzler, James Lee, Matt McGue, Thomas Meitinger, David Melzer, Josine L. Min, Karen L. Mohlke, John B. Vincent, Matthias Nauck, Deborah A. Nickerson, Aarno Palotie, Michele T. Pato, Nicola Pirastu, Melvin G. McInnis, J. Brent Richards, Cinzia Sala, Veikko Salomaa, David Schlessinger, Sebastian Schoenherr, P. Eline Slagboom, Kerrin S. Small, Tim D. Spector, Dwight Stambolian, Marcus A. Tuke, Jaakko Tuomilehto, Leonard H. van den Berg, Wouter van Rheenen, Uwe Völker, Cisca Wijmenga, Daniela Toniolo, Eleftheria Zeggini, Paolo Gasparini, Matthew G. Sampson, James F. Wilson, Timothy M. Frayling, Paul I.W. de Bakker, Morris A. Swertz, Steven A. McCarroll, Charles Kooperberg, Annelot M. Dekker, David Altshuler, Cristen J. Willer, William G. Iacono, Samuli Ripatti, Nicole Soranzo, Klaudia Walter, Anand Swaroop, Francesco Cucca, Carl A. Anderson, Richard M. Myers, Michael Boehnke, Mark I. McCarthy, Richard Durbin, Gonçalo R. Abecasis, Jonathan Marchini 
01 Jan 2016
TL;DR: In this article, a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry is presented.
Abstract: We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.

1,261 citations

Journal ArticleDOI
TL;DR: The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Abstract: Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, α + thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.

1,002 citations