scispace - formally typeset
Search or ask a question
Author

K. Rottler

Bio: K. Rottler is an academic researcher from University of Tübingen. The author has contributed to research in topics: Dark matter & European Underground Rare Event Calorimeter Array. The author has an hindex of 14, co-authored 28 publications receiving 1570 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO4 crystals, completed 730 kg days of data taking in 2011 as mentioned in this paper.
Abstract: The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO4 crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.

820 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results from a low-threshold analysis of a single upgraded detector module, which efficiently vetoes low energy backgrounds induced by $$\alpha $$¯¯ -decays on inner surfaces of the detector.
Abstract: The CRESST-II cryogenic dark matter search aims for the detection of WIMPs via elastic scattering off nuclei in CaWO $$_4$$ crystals. We present results from a low-threshold analysis of a single upgraded detector module. This module efficiently vetoes low energy backgrounds induced by $$\alpha $$ -decays on inner surfaces of the detector. With an exposure of 29.35 kg live days collected in 2013 we set a limit on spin-independent WIMP-nucleon scattering which probes a new region of parameter space for WIMP masses below 3 GeV/c $$^2$$ , previously not covered in direct detection searches. A possible excess over background discussed for the previous CRESST-II phase 1 (from 2009 to 2011) is not confirmed.

204 citations

Journal ArticleDOI
TL;DR: The CRESST cryogenic direct dark matter search at Gran Sasso, searching for WIMPs via nuclear recoil as discussed by the authors, has been upgraded with a new detector support structure capable of accommodating 33 modules, the associated multichannel readout with 66 SQUID channels, a neutron shield, a calibration source lift and the installation of a muon veto.

185 citations

Journal ArticleDOI
TL;DR: The European Underground Rare Event Calorimeter Array (EURECA) as discussed by the authors is a new project, searching for dark matter, with largely the present groups of the CRESST and EDELWEISS experiments and already a few new groups.

48 citations

Journal ArticleDOI
TL;DR: The European Underground Rare Event Calorimeter Array (EURECA) project as discussed by the authors is a project aiming at searching for dark matter particles using cryogenic bolometers, with the first stage achieving a sensitivity of 3. 10−10 pb and the second stage achieving 2.5 pb.

43 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This new version of micrOMEGAs is a major update which includes a generalization of the Boltzmann equations to accommodate models with asymmetric dark matter or with semi-annihilation and a first approach to a generalizations of the thermodynamics of the Universe in the relic density computation.

922 citations

Journal ArticleDOI
Sergey Alekhin, Wolfgang Altmannshofer1, Takehiko Asaka2, Brian Batell3, Fedor Bezrukov4, Kyrylo Bondarenko5, Alexey Boyarsky5, Ki-Young Choi6, Cristóbal Corral7, Nathaniel Craig8, David Curtin9, Sacha Davidson10, Sacha Davidson11, André de Gouvêa12, Stefano Dell'Oro, Patrick deNiverville13, P. S. Bhupal Dev14, Herbi K. Dreiner15, Marco Drewes16, Shintaro Eijima17, Rouven Essig18, Anthony Fradette13, Björn Garbrecht16, Belen Gavela19, Gian F. Giudice3, Mark D. Goodsell20, Mark D. Goodsell21, Dmitry Gorbunov22, Stefania Gori1, Christophe Grojean23, Alberto Guffanti24, Thomas Hambye25, Steen Honoré Hansen24, Juan Carlos Helo26, Juan Carlos Helo7, Pilar Hernández27, Alejandro Ibarra16, Artem Ivashko5, Artem Ivashko28, Eder Izaguirre1, Joerg Jaeckel29, Yu Seon Jeong30, Felix Kahlhoefer, Yonatan Kahn31, Andrey Katz3, Andrey Katz32, Andrey Katz33, Choong Sun Kim30, Sergey Kovalenko7, Gordan Krnjaic1, Valery E. Lyubovitskij34, Valery E. Lyubovitskij35, Valery E. Lyubovitskij36, Simone Marcocci, Matthew McCullough3, David McKeen37, Guenakh Mitselmakher38, Sven Moch39, Rabindra N. Mohapatra9, David E. Morrissey40, Maksym Ovchynnikov28, Emmanuel A. Paschos, Apostolos Pilaftsis14, Maxim Pospelov1, Maxim Pospelov13, Mary Hall Reno41, Andreas Ringwald, Adam Ritz13, Leszek Roszkowski, Valery Rubakov, Oleg Ruchayskiy24, Oleg Ruchayskiy17, Ingo Schienbein42, Daniel Schmeier15, Kai Schmidt-Hoberg, Pedro Schwaller3, Goran Senjanovic43, Osamu Seto44, Mikhail Shaposhnikov17, Lesya Shchutska38, J. Shelton45, Robert Shrock18, Brian Shuve1, Michael Spannowsky46, Andrew Spray47, Florian Staub3, Daniel Stolarski3, Matt Strassler33, Vladimir Tello, Francesco Tramontano48, Anurag Tripathi, Sean Tulin49, Francesco Vissani, Martin Wolfgang Winkler15, Kathryn M. Zurek50, Kathryn M. Zurek51 
Perimeter Institute for Theoretical Physics1, Niigata University2, CERN3, University of Connecticut4, Leiden University5, Korea Astronomy and Space Science Institute6, Federico Santa María Technical University7, University of California, Santa Barbara8, University of Maryland, College Park9, Claude Bernard University Lyon 110, University of Lyon11, Northwestern University12, University of Victoria13, University of Manchester14, University of Bonn15, Technische Universität München16, École Polytechnique Fédérale de Lausanne17, Stony Brook University18, Autonomous University of Madrid19, Centre national de la recherche scientifique20, University of Paris21, Moscow Institute of Physics and Technology22, Autonomous University of Barcelona23, University of Copenhagen24, Université libre de Bruxelles25, University of La Serena26, University of Valencia27, Taras Shevchenko National University of Kyiv28, Heidelberg University29, Yonsei University30, Princeton University31, University of Geneva32, Harvard University33, Tomsk State University34, University of Tübingen35, Tomsk Polytechnic University36, University of Washington37, University of Florida38, University of Hamburg39, TRIUMF40, University of Iowa41, University of Grenoble42, International Centre for Theoretical Physics43, Hokkai Gakuen University44, University of Illinois at Urbana–Champaign45, Durham University46, University of Melbourne47, University of Naples Federico II48, York University49, Lawrence Berkeley National Laboratory50, University of California, Berkeley51
TL;DR: It is demonstrated that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Abstract: This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau \to 3\mu $ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals—scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

842 citations

Journal ArticleDOI
TL;DR: A new module of the micrOMEGAs package is presented for the calculation of WIMP–nuclei elastic scattering cross sections relevant for the direct detection of dark matter through its interaction with nuclei in a large detector.

822 citations

Journal ArticleDOI
TL;DR: The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO4 crystals, completed 730 kg days of data taking in 2011 as mentioned in this paper.
Abstract: The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO4 crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.

820 citations