scispace - formally typeset
Search or ask a question
Author

K.S. Fant

Bio: K.S. Fant is an academic researcher from Stanford University. The author has contributed to research in topics: Particle accelerator & Klystron. The author has an hindex of 10, co-authored 31 publications receiving 486 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multimode $X$-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC).
Abstract: We present a multimode $X$-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

199 citations

Journal ArticleDOI
TL;DR: Relativistic klystron technology is used to extract 290 MW of peak power from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator to measure rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam.
Abstract: We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power.

58 citations

Proceedings ArticleDOI
17 May 1993
TL;DR: The NLC Test Accelerator (NLCTA) as discussed by the authors is a testbed for the next linear Collider (NLC) and is designed to address many questions related to the dynamics of the beam during acceleration.
Abstract: During the past several years, there has been tremendous progress on the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report on the status of the design, component development, and construction of the NLC Test Accelerator. >

44 citations

Proceedings ArticleDOI
01 Jan 1999
TL;DR: In this article, the S-matrix of a smooth transition from a rectangular waveguide to a circular waveguide is designed to preserve common reflection symmetries, and the modal connections are one to one and order preserving.
Abstract: We present the design and analysis for a set of smooth transitions from rectangular to circular waveguide that preserves their common reflection symmetries. The S-matrix of the transition connects modes of the same symmetry class, and for a sufficiently adiabatic transition preserves their TE (or TM) character. It is then also non-reflecting and, in the absence of degeneracy, its modal connections are one to one and order preserving. This property enables us to carry out all of the RF manipulations in the more easily handled over-moded rectangular waveguide.

24 citations

Journal ArticleDOI
TL;DR: Tantawi et al. as discussed by the authors proposed the use of TE12 in circular waveguide with smooth walls for low-loss transport of rf signals in multimoded systems and described the different techniques used to generate it and receive it.
Abstract: The use of TE12 in circular waveguide with smooth walls was suggested for low-loss transport of rf signals in multimoded systems [S. G. Tantawi et al., in Advanced Accelerator Concepts: Eighth Workshop, edited by Wes Lawson, AIP Conf. Proc. No. 472 (AIP, New York, 1999), pp. 967–974]. Such systems use the same waveguide to transport different signals over different modes. In this report we detail a series of experiments designed to measure the characteristics of this mode. We also describe the different techniques used to generate it and receive it. The experiments were done at X band around a frequency of 11.424 GHz, the frequency of choice for future linear colliders at X band [The NLC Design Group, Report No. LBNL-PUB-5424, SLAC Report No. 474, Report No. UCRL-ID 124161, 1996; The JLC Design Group, KEK-REPORT-97-1, 1997]. The transportation medium is 55 m of highly overmoded circular waveguide. The design of the joining flanges is also presented.

22 citations


Cited by
More filters
Patent
16 Oct 2015
TL;DR: In this paper, the authors describe a system that receives, by a feed point of a dielectric antenna, electromagnetic waves from a core coupled to the feed point without an electrical return path, and radiates a wireless signal responsive to the electromagnetic waves being received at the aperture.
Abstract: Aspects of the subject disclosure may include, for example, receiving, by a feed point of a dielectric antenna, electromagnetic waves from a dielectric core coupled to the feed point without an electrical return path, where at least a portion of the dielectric antenna comprises a conductive surface, directing, by the feed point, the electromagnetic waves to a proximal portion of the dielectric antenna, and radiating, via an aperture of the dielectric antenna, a wireless signal responsive to the electromagnetic waves being received at the aperture. Other embodiments are disclosed.

330 citations

Patent
17 May 2016
TL;DR: In this paper, a distributed antenna and backhaul system provide network connectivity for a small cell deployment using high-bandwidth, millimeter-wave communications and existing power line infrastructure, rather than building new structures, and installing additional fiber and cable.
Abstract: A distributed antenna and backhaul system provide network connectivity for a small cell deployment. Rather than building new structures, and installing additional fiber and cable, embodiments described herein disclose using high-bandwidth, millimeter-wave communications and existing power line infrastructure. Above ground backhaul connections via power lines and line-of-sight millimeter-wave band signals as well as underground backhaul connections via buried electrical conduits can provide connectivity to the distributed base stations. An overhead millimeter-wave system can also be used to provide backhaul connectivity. Modules can be placed onto existing infrastructure, such as streetlights and utility poles, and the modules can contain base stations and antennas to transmit the millimeter-waves to and from other modules.

298 citations

Patent
07 Jun 2016
TL;DR: In this article, a distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas.
Abstract: A distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas. The cellular band outputs of these microcell base station devices are used to modulate a 60 GHz (or higher) carrier wave, yielding a group of subcarriers on the 60 GHz carrier wave. This group will then be transmitted in the air via analog microwave RF unit, after which it can be repeated or radiated to the surrounding area. The repeaters amplify the signal and resend it on the air again toward the next repeater. In places where a microcell is required, the 60 GHz signal is shifted in frequency back to its original frequency (e.g., the 1.9 GHz cellular band) and radiated locally to nearby mobile devices.

296 citations

Patent
15 Sep 2014
TL;DR: In this article, the authors describe a device that facilitates transmitting electromagnetic waves along a surface of a wire that facilitates delivery of electric energy to devices, and sensing a condition that is adverse to the electromagnetic waves propagating along the surface of the wire.
Abstract: Aspects of the subject disclosure may include, for example, a device that facilitates transmitting electromagnetic waves along a surface of a wire that facilitates delivery of electric energy to devices, and sensing a condition that is adverse to the electromagnetic waves propagating along the surface of the wire. Other embodiments are disclosed.

288 citations

Patent
02 Oct 2014
TL;DR: In this article, a system for detecting a fault in a first wire of a power grid that affects a transmission or reception of electromagnetic waves that transport data and that propagate along a surface of the first wire is described.
Abstract: Aspects of the subject disclosure may include, for example, a system for detecting a fault in a first wire of a power grid that affects a transmission or reception of electromagnetic waves that transport data and that propagate along a surface of the first wire, selecting a backup communication medium from one or more backup communication mediums according to one or more selection criteria, and redirecting the data to the backup communication medium to circumvent the fault. Other embodiments are disclosed.

286 citations