scispace - formally typeset
Search or ask a question
Author

K. S. Novoselov

Bio: K. S. Novoselov is an academic researcher from University of Manchester. The author has contributed to research in topics: Graphene & Quantum tunnelling. The author has an hindex of 42, co-authored 71 publications receiving 57266 citations. Previous affiliations of K. S. Novoselov include National University of Singapore.


Papers
More filters
Journal Article
TL;DR: In this paper, the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias, and the gap can be changed from zero to mid-infrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2.
Abstract: We demonstrate that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias. From the magnetotransport data (Shubnikov-de Haas measurements of the cyclotron mass), and using a tight-binding model, we extract the value of the gap as a function of the electronic density. We show that the gap can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2. The opening of a gap is clearly seen in the quantum Hall regime.

1,365 citations

Journal ArticleDOI
TL;DR: It is shown that light-emitting diodes made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences can also provide the basis for flexible and semi-transparent electronics.
Abstract: The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors5, photovoltaic devices, etc. Here we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light emitting diodes (LEDs) made by stacking up metallic graphene, insulating hexagonal boron nitride (hBN) and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further with increasing the number of available 2D crystals and improving their electronic quality.

1,150 citations

Journal ArticleDOI
30 May 2013-Nature
TL;DR: Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures.
Abstract: Placing graphene on a boron nitride substrate and accurately aligning their crystallographic axes, to form a moire superlattice, leads to profound changes in the graphene’s electronic spectrum. In 1976 Douglas Hofstadter predicted that electrons in a lattice subjected to electrostatic and magnetic fields would show a characteristic energy spectrum determined by the interplay between two quantizing fields. The expected spectrum would feature a repeating butterfly-shaped motif, known as Hofstadter's butterfly. The experimental realization of the phenomenon has proved difficult because of the problem of producing a sufficiently disorder-free superlattice where the length scales for magnetic and electric field can truly compete with each other. Now that goal has been achieved — twice. Two groups working independently produced superlattices by placing ultraclean graphene (Ponomarenko et al.) or bilayer graphene (Kim et al.) on a hexagonal boron nitride substrate and crystallographically aligning the films at a precise angle to produce moire pattern superstructures. Electronic transport measurements on the moire superlattices provide clear evidence for Hofstadter's spectrum. The demonstrated experimental access to a fractal spectrum offers opportunities for the study of complex chaotic effects in a tunable quantum system. Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties1,2,3,4,5,6,7,8. In previous studies (see, for example, refs 1, 2, 3, 4, 5, 6, 7, 8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice1,2,3,4. Evidence for the formation of superlattice minibands (forming a fractal spectrum known as Hofstadter’s butterfly9) has been limited to the observation of new low-field oscillations5 and an internal structure within Landau levels6,7,8. Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate’s moire potential10,11,12 acts as a superlattice and leads to profound changes in the graphene’s electronic spectrum. Second-generation Dirac points13,14,15,16,17,18,19,20,21,22 appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene’s conduction and valence bands. Strong magnetic fields lead to Zak-type cloning23 of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems7,8,9,22,23,24 and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures25.

1,135 citations

Journal ArticleDOI
TL;DR: The Born-Oppenheimer approximation (BO) has proven effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems as discussed by the authors.
Abstract: The Born-Oppenheimer approximation (BO) has proven effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Graphene, recently discovered in the free state, is a zero band-gap semiconductor, which becomes a metal if the Fermi energy is tuned applying a gate-voltage Vg. Graphene electrons near the Fermi energy have twodimensional massless dispersions, described by Dirac cones. Here we show that a change in Vg induces a stiffening of the Raman G peak (i.e. the zone-center E2g optical phonon), which cannot be described within BO. Indeed, the E2g vibrations cause rigid oscillations of the Dirac-cones in the reciprocal space. If the electrons followed adiabatically the Dirac-cone oscillations, no change in the phonon frequency would be observed. Instead, since the electron-momentum relaxation near the Fermi level is much slower than the phonon motion, the electrons do not follow the Dirac-cone displacements. This invalidates BO and results in the observed phonon stiffening. This spectacular failure of BO is quite significant since BO has been the fundamental paradigm to determine crystal vibrations from the early days of quantum mechanics.

971 citations

Journal ArticleDOI
TL;DR: In this paper, a stoichiometric derivative of graphene with a fluorine atom attached to each carbon was reported, which is inert and stable up to 400C even in air, similar to Teflon.
Abstract: We report a stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >10^12 Ohm per square) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting Young's modulus of 100 N/m and sustaining strains of 15%. Fluorographene is inert and stable up to 400C even in air, similar to Teflon.

869 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone2, James Hone1 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations