scispace - formally typeset
Search or ask a question
Author

K. V. Rao

Other affiliations: Bhavnagar University
Bio: K. V. Rao is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Thin film & Magnetization. The author has an hindex of 31, co-authored 197 publications receiving 3782 citations. Previous affiliations of K. V. Rao include Bhavnagar University.


Papers
More filters
Journal ArticleDOI
Do Kyung Kim1, Y. Zhang1, W. Voit1, K. V. Rao1, Mamoun Muhammed1 
TL;DR: In this article, the synthesis and coating of superparamagnetic monodispersed iron oxide nanoparticles was carried out by chemical solution method and controlled co-precipitation technique was used to prevent undesirable critical oxidation of Fe.

716 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss p-type ZnO materials: theory, growth, properties and devices, comprehensively, and summarize the growth techniques and properties of P-type materials.

329 citations

Journal ArticleDOI
TL;DR: In this article, the first observations of ferromagnetic ordering above room temperature for small atomic percentages of Mn doped in ZnO were reported, with an average moment of 0.16μ B per Mn ion.

145 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the interface structure on the exchange bias in the bulk single crystals or thin films was studied, and it was shown that the bias depends strongly on the spin structure at the interface and the angle between the ferromagnetic and antiferromagnetic spins.
Abstract: We have studied the effect of the interface structure on the exchange bias in the ${\mathrm{FeF}}_{2}\ensuremath{-}\mathrm{Fe}$ system, for ${\mathrm{FeF}}_{2}$ bulk single crystals or thin films. The exchange bias depends very strongly on the crystalline orientation of the antiferromagnet for both films and crystals. However, the interface roughness seems to have a strong effect mainly on the film systems. These results indicate that the exchange bias depends strongly on the spin structure at the interface, especially on the angle between the ferromagnetic and antiferromagnetic spins. We have also found a strong dependence of the hysteresis loops shape on the cooling field direction with respect to the antiferromagnetic anisotropy axis, induced by a rotation of the ferromagnetic easy axis as the sample is cooled through ${T}_{N}.$ For the single crystal systems the results imply the existence of a perpendicular coupling between the antiferromagnetic and ferromagnetic spins at low temperatures.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Book ChapterDOI
TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Abstract: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other biological entities; (ii) therapeutic drug, gene and radionuclide delivery; (iii) radio frequency methods for the catabolism of tumours via hyperthermia; and (iv) contrast enhancement agents for magnetic resonance imaging applications. Future prospects are also discussed.

2,815 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations