scispace - formally typeset
Search or ask a question
Author

K.V.S. Rama Rao

Bio: K.V.S. Rama Rao is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Magnetization & Curie temperature. The author has an hindex of 16, co-authored 67 publications receiving 642 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the relative effect on the permanent magnet characteristics viz. remanence (Br), intrinsic coercivity (Hci), Curie temperature (TC), and rectangularity of the intrinsic demagnetization curve, when Al, Cu, Ga, and Nb are added individually to NdFeB, was described.
Abstract: This study describes the relative effect on the permanent magnet characteristics viz. remanence (Br), intrinsic coercivity (Hci), Curie temperature (TC), and rectangularity of the intrinsic demagnetization curve, when Al, Cu, Ga, and Nb are added individually to NdFeB. Each elemental addition causes significant improvement in Hci but the level of improvement differs from one additive element to the other. The addition of Nb is favored over other elements for realizing maximum enhancement in Hci and rectangularity of the demagnetization curve. The microstructural features of the sintered samples of NdFeB with elemental addition show the formation of a new phase, in addition to the phases (φ,η, and Nd-rich) generally found in the ternary sample. The factors influencing the permanent magnet characteristics of sintered samples are the distribution of the Nd-rich phase in the intergranular region, the size and distribution of the minor phases at the grain junctions, the formation and distribution of new phases...

107 citations

Journal ArticleDOI
TL;DR: In this paper, the C-15-type Laves phase structure of intermetallic compounds Zr 1-x Ho x Co 2 (x = 0.4, 0.6 and 0.8) was determined for the intermetall compounds with a temperature range 50-200 °C at pressures up to 40 bar.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of individual and successive additions of Co, Dy and Ga on the degree of variation in these magnetic properties and in the microstructure of anisotropic Nd-Fe-B magnets was investigated.

33 citations

Journal ArticleDOI
TL;DR: In this article, a novel class of Co-substituted 3-29 materials, Pr3(Fe1−xCox)27.5Ti1.5 (x=0, 0.1 and 0.3) have been synthesized, and the saturation magnetization increases with Co concentration both at 5 and 300 k and is explained on the basis of a rigid band model.

32 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: In this paper, the role of microstructure on the extrinsic magnetic properties of the materials is stressed and it is emphasized how careful control of the micro-structure has played an important role in their improvement.

390 citations

Journal ArticleDOI
TL;DR: In this paper, the compositions of grain boundaries (GBs) and other interfaces surrounding Nd 2 Fe 14 B sintered magnets have been investigated by laser-assisted three-dimensional atom probe to understand the mechanism of the coercivity enhancement by post-sinter annealing.

318 citations

Book ChapterDOI
01 Jan 1988
TL;DR: In this paper, a review of the last fifteen years of solid hydrate research is presented, focusing on new results of structure determination and infrared and Raman studies in terms of hydrogen bonding and other intermolecular bonding interactions.
Abstract: Solid hydrate research of the last fifteen years is critically evaluated with regard to bonding and structure of water molecules. This review focusses on new results of structure determination and infrared and Raman studies in terms of hydrogen bonding and other intermolecular bonding interactions, distortion and disorder of water molecules, intermolecular and intramolecular coupling and anharmonicity of water bands, isotopic effects, and phase transitions. The techniques used for structure determination and spectroscopic measurements of solid hydrates are discussed.

191 citations

Journal ArticleDOI
TL;DR: In this article, the effect of Zn substitution on temperature-dependent magnetic properties of the TREG-coated Zn nanoparticles was investigated in the temperature range of 10 −400 K and in magnetic fields up to 9 −T. The structural, morphological, and magnetic properties were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM).
Abstract: Zn-substituted cobalt ferrite (Zn x Co1−x Fe2O4 with 0.0 ≤ x ≤ 1.0) nanoparticles coated with triethylene glycol (TREG) were prepared by the hydrothermal technique. The effect of Zn substitution on temperature-dependent magnetic properties of the TREG-coated Zn x Co1−x Fe2O4 nanoparticles has been investigated in the temperature range of 10–400 K and in magnetic fields up to 9 T. The structural, morphological, and magnetic properties of TREG-coated Zn x Co1−x Fe2O4 NPs were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The average crystallite size estimated from X-ray line profile fitting was found to be in the range of 7.0–10 nm. The lattice constant determined using the Nelson–Riley extrapolation method continuously increases with the increase in Zn2+ content, obeying Vegard’s law. TEM analysis revealed that the synthesized particles were nearly monodisperse, roughly spherical shaped nanoparticles in the size range of 9.0–15 nm. FT-IR spectra confirm that TREG is successfully coated on the surface of nanoparticles (NPs). The substitution of non-magnetic Zn2+ ions for magnetic Co2+ ions substantially changes the magnetic properties of the TREG-coated Zn x Co1−x Fe2O4 NPs. The saturation magnetization and the experimental magnetic moment are observed to initially increase (up to x = 0.2), which is explained by Neel’s collinear two-sublattice model, and then continuously decrease with further increase in Zn content x. This decrease obeys the three-sublattice model suggested by Yafet–Kittel (Y–K). While the Y–K angle is zero for the CoFe2O4 NPs coated with TREG, it increases gradually with increasing Zn concentrations and extrapolates to 82.36° for ZnFe2O4 NPs coated with TREG. The increase in spin canting angles (Y–K angles) suggests the existence of triangular (or canted) spin arrangements in all the samples (except for the samples with x = 0.0) under consideration in this work. From the computation of Y–K angles for the TREG-coated Zn x Co1−x Fe2O4 NPs, it can be concluded that all the zinc-doped cobalt ferrite nanoparticles (for x > 0.0) have a Y–K-type magnetic order, while the pure cobalt ferrite nanoparticles (x = 0.0) have a Neel-type magnetic order. Zero field cooled (ZFC) and field cooled (FC) measurement results further verify that the samples with 0.6 ≤ x ≤ 1.0 have superparamagnetic behavior at room temperature, which shows weak interaction between magnetic particles. The blocking temperatures obtained from ZFC–FC curves decrease as a function of Zn concentration. It was found that the effective magnetic anisotropy, the coercivity, and remanence magnetization continuously decrease with increasing Zn concentration. Lower reduced remanent magnetization (M r/M s) values (<0.5) suggest that all the samples have uniaxial anisotropy. Ferromagnetic resonance (FMR) measurement shows that the FMR spectra of all the samples have broad linewidth because of the magnetic nanoparticles with randomly distributed anisotropy axes, and the decrease in the internal field conversely leads to the increase in the resonance field with respect to increasing Zn concentration.

128 citations