scispace - formally typeset
Search or ask a question
Author

K. Yakushi

Bio: K. Yakushi is an academic researcher from IBM. The author has contributed to research in topics: Polypyrrole & Bipolaron. The author has an hindex of 2, co-authored 2 publications receiving 681 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article presented des resultats de calculs de structure de bandes en liaison forte pour une chaine polypyrrole deformable, en fonction du dopage.
Abstract: Presentation des resultats de calculs de structure de bandes en liaison forte pour une chaine polypyrrole deformable, en fonction du dopage. Les etats qui sont produits sont des polarons et des bipolarons dont le spectre d'excitation explique les donnees d'absorption optique

579 citations

Journal ArticleDOI
J. C. Scott1, Jean-Luc Brédas1, K. Yakushi1, P. Pfluger1, G.B. Street1 
TL;DR: In this paper, experimental data and theoretocal studies support the hypothesis that bipolarons are the charge carriers responsible for the conductivity of polypyrrole, and a consistent model emerges from consideration of earlier transport, ESR, photoelectron spectroscopy and optical absorption results.

125 citations


Cited by
More filters
Journal ArticleDOI
07 Mar 2007-Sensors
TL;DR: In this article, a review of gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers has been reviewed.
Abstract: The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

1,333 citations

Journal ArticleDOI
TL;DR: Electropolymerization in Novel Electrolytic Media 4745: Influence of the Polymerization Technique, Influence of Experimental Conditions, and Specific Phenomena of n-Doping.
Abstract: 2.2. Cathodic Electropolymerization 4732 2.2.1. Electropolymerization of PPXs and PPVs 4732 3. Charging-Discharging of Conducting Polymers 4733 3.1. Redox Properties of Oligomers and Polymers 4733 3.2. Specific Phenomena of n-Doping 4739 3.3. Conductivity in Charged Systems 4740 4. Controlling the Electropolymerization Process 4742 4.1. Influence of the Polymerization Technique 4742 4.2. Influence of Experimental Conditions 4743 4.3. Electropolymerization in Novel Electrolytic Media 4745

979 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of charge transfer on conjugated polymers was investigated at the ab initio level with explicit consideration of the doping agents, and three systems were chosen for study as prototypical examples of polymers with nondegenerate ground states: polyparaphenylene, polypyrrole, and polythiophene.
Abstract: The effect of charge-transfer doping on the geometric and electronic structures of conjugated polymers has been investigated at the ab initio level with explicit consideration of the doping agents. Three systems were chosen for study as prototypical examples of conjugated polymers with nondegenerate ground states: polyparaphenylene, polypyrrole, and polythiophene. As a result of charge transfer with electron-donating dopants, extra charges appear on the polymer chains and induce strong geometry modifications. The lattice evolves from an aromatic structure towards a quinoid-like structure. Charged defects associated with lattice deformations such as spinless bipolarons are formed. The influence on the electronic structure of the polymer chains is such that with respect to the undoped case, new states appear within the gap. For the maximum doping levels experimentally achieved, band-structure calculations demonstrate that the states in the gap overlap to form bipolaron bands, a few tenths of an electron volt wide. The presence of these bipolaron bands is consistent with optical data as well as with magnetic data which suggest that the charge carriers in the highly conducting regime are spinless.

627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a new method of electrochemical polymerization of poly(thiophene) using dithiophene as the starting material, from which they obtain a high-quality film with a sharp interband absorption edge.
Abstract: We present a new method of electrochemical polymerization of poly(thiophene) using dithiophene as the starting material, from which we obtain a high-quality film with a sharp interband absorption edge. An in situ study of the absorption spectrum during the electrochemical doping process has been carried out. In the dilute regime, the results are in detailed agreement with charge storage via bipolarons; weakly confined soliton pairs with confinement parameter $\ensuremath{\gamma}\ensuremath{\cong}0.1\ensuremath{-}0.2$. At the highest doping levels, the data are characteristic of the free-carrier absorption expected for a metal. From a parallel electrochemical voltage spectroscopy study, we find evidence of charge injection near the band edge and charge removal from the bipolaron gap states. In the dilute regime, the position of the chemical potential is consistent with charge storage in weakly confined bipolarons. The high Coulombic recovery over a charge-discharge cycle indicates that poly (thiophene) may be an excellent cathode-active material in battery applications.

550 citations