scispace - formally typeset
Search or ask a question
Author

K Yoda

Bio: K Yoda is an academic researcher. The author has contributed to research in topics: Thinning. The author has an hindex of 1, co-authored 1 publications receiving 715 citations.
Topics: Thinning

Papers
More filters

Cited by
More filters
Book ChapterDOI
TL;DR: In this article, the authors reviewed the rates at which coarse wood debris is added and removed from ecosystems, the biomass found in streams and forests, and many functions that CWD serves.
Abstract: Publisher Summary This chapter reviews the rates at which Coarse Woody Debris (CWD) is added and removed from ecosystems, the biomass found in streams and forests, and many functions that CWD serves. CWD is an important component of temperate stream and forest ecosystems and is added to the ecosystem by numerous mechanisms, including wind, fire, insect attack, pathogens, competition, and geomorphic processes. Many factors control the rate at which CWD decomposes, including temperature, moisture, the internal gas composition of CWD, substrate quality, the size of the CWD, and the types of organisms involved. The mass of CWD in an ecosystem ideally represents the balance between addition and loss. In reality, slow decomposition rates and erratic variations in input of CWD cause the CWD mass to deviate markedly from steady-state projections. Many differences correspond to forest type, with deciduous-dominated systems having generally lower biomass than conifer-dominated systems. Stream size also influences CWD mass in lotic ecosystems, while successional stage dramatically influences CWD mass in boat aquatic and terrestrial settings. This chapter reviews many of these functions and concludes that CWD is an important functional component of stream and forest ecosystems. Better scientific understanding of these functions and the natural factors influencing CWD dynamics should lead to more enlightened management practices.

3,247 citations

Journal ArticleDOI
11 Sep 2008-Nature
TL;DR: The results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral, and suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent the global net ecosystem productivity.
Abstract: Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 times 10 8 hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 plusminus 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed

1,532 citations

Book
01 Jan 2005
TL;DR: An excellent introduction and overview of this field, written by Volker Grimm and Steven F. Railsback, should be read by everyone interested in individual-based modeling and especially by anyone contemplating developing, or being involved with a group developing, an individualbased model.
Abstract: Individual-based modeling is a new, exciting discipline that allows ecologists to explore, using computer simulations, how properties of populations and ecosystems might evolve from the characteristics and behaviors of individual organisms. Individual-based Modeling and Ecology, written by Volker Grimm and Steven F. Railsback, gives an excellent introduction and overview of this field. It should be read by everyone interested in individual-based modeling, and especially by anyone contemplating developing, or being involved with a group developing, an individualbased model.

1,495 citations

Book
01 Jan 1994
TL;DR: There is a large body of work on the use of mixed plantations and natural forests in forest management as mentioned in this paper, and many approaches have been proposed to build a model for mixed forests.
Abstract: This book attempts to make growth models more accessible to foresters and others interested in mixed forests, whether planted or natural. There is an increasing interest in, and controversy surrounding the use of mixed plantations and natural forests, and rational discussion and resolution of management options require reliable growth models linked to other information systems. It is my hope that this book will help researchers to build better models, and will help users to understand how the models work and thus to appreciate their strengths and weaknesses. During recent years, vast areas of natural forest, especially in the tropics, have been logged or converted to other uses. Well-meaning forest managers have often been over-optimistic in estimating forest growth and yields, and this has contributed to over-cutting in some forests. Growth models can provide objective forecasts, offering forest managers the information needed to maintain harvests within the sustainable capacity of the forest, and providing quantitative data for land use planners to make informed decisions on land use alternatives. In this way, I hope that this book will contribute to the conservation and sustainable management of natural forests in the tropics and elsewhere. This is not a "How to do it" manual with step-by-step instructions to build a growth model for mixed forests. Unfortunately, modelling these forests isn't that easy. There is no single "best" way to build a model for these forests. Rather, many approaches can be used, and the best one depends on the data available, the time and expertise available to build the model, the computing resources, and the inferences that are to be drawn from the model. So instead of writing a "cookbook" with one or two recipes, I review and illustrate some of the many approaches available, indicate the requirements of and output from each, and highlight their strengths and limitations. The book emphasizes empirical-statistical models rather than physiological-process type models, not because they are superior, but because they have proven utility and offer immediate benefits for forest management. A more comprehensive treatment of all the options is beyond the scope of this book, which is intended to serve as a ready reference manual for those building growth models for forest management. Because of my limited linguistic ability, the material covered is more-or-less restricted to English-language material. I have not attempted to review all the published work on growth modelling (it would be a huge task), but have tried to highlight examples that may be applicable to mixed forests in tropical areas. I hope that the language and terminology used in this book will be accessible to all readers, especially those for whom English is a second language. The glossary may help to clarify some terms, and those that have a specific technical meaning are printed in italics the first time they are used. Readers should consult the glossary to clarify the meaning of these words unless they are sure of the meaning. Exercises are given at the end of each chapter to reinforce points made in the chapter. These are simple exercises, deliberately chosen so that they can be completed quickly with pen and paper or PC and spreadsheet, but within these constraints, I have tried to keep them realistic. Some exercises (e.g. 9.1 and 10.3) require more specialized statistical analyses, but many commercial statistical packages (e.g. GLIM) are suitable. Where possible, these exercises draw on real data, but some data were simulated to create interesting exercises with few data. Whilst my approach places more responsibility on the reader to choose and develop a suitable modelling methodology, I hope it will help readers gain a better understanding of modelling, which should in turn lead to better models and more reliable predictions. And I hope that better models will provide better information, greater understanding, and better management of mixed forests.

981 citations

Journal ArticleDOI
10 Sep 1998-Nature
TL;DR: In this article, the scaling relationship between density and mass in resource-limited plants was investigated and a mechanistic model was developed to predict that average plant size should scale as the −4/3 power of maximum population density, in agreement with empirical evidence and comparable relationships in animals.
Abstract: Scaling relationships that describe variation in population density with body size in ecological communities, such as the thinning law in plant ecology1,2,3, can be explained in terms of how individuals use resources as a function of their size. Data for rates of xylem transport as a function of stem diameter show that rates of resource use in individual plants scale as approximately the 3/4 power of body mass, which is the same as metabolic rates of animals4,5,6,7. Here we use this relationship to develop a mechanistic model for relationships between density and mass in resource-limited plants. It predicts that average plant size should scale as the −4/3 power of maximum population density, in agreement with empirical evidence and comparable relationships in animals5,6,8, but significantly less than the −3/2 power predicted by geometric models1. Our model implies that fundamental constraints on metabolic rate are reflected in the scaling of population density and other ecological and evolutionary phenomena, including the finding that resource allocation among species in ecosystems is independent of body size5,6,8.

842 citations