scispace - formally typeset
Search or ask a question
Author

Ka Wai Wong

Bio: Ka Wai Wong is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Diamond & Carbon nanotube. The author has an hindex of 33, co-authored 108 publications receiving 3523 citations. Previous affiliations of Ka Wai Wong include China Academy of Engineering Physics & University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used x-ray photoelectron spectroscopy to measure indium incorporation in poly(3,4-ethylene dioxythiophene):poly(styrene sulphonate), referred to as PEDOT:PSS, which were spincast on bare ITO and encapsulated ITO.
Abstract: In the fabrication of polymeric electroluminescent devices with indium-tin oxide (ITO) as anode, indium contamination of the polymers can greatly degrade the device performance. In the present study, we have used x-ray photoelectron spectroscopy to measure indium incorporation in poly(3,4-ethylene dioxythiophene):poly(styrene sulphonate), referred to as PEDOT:PSS, which were spincast on bare ITO and encapsulated ITO. We found that the deposition of a self-assembled monolayer of alkylsiloxanes on ITO prior to spincasting PEDOT:PSS was effective and practical in blocking the reactions between ITO and PEDOT:PSS.

349 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of oxidative and reductive treatments of indium-tin-oxide (ITO) on the performance of electroluminescent devices is presented.
Abstract: The influence of oxidative and reductive treatments of indium–tin–oxide (ITO) on the performance of electroluminescent devices is presented. The improvement in device performance is correlated with the surface chemical composition and work function. The work function is shown to be largely determined by the surface oxygen concentration. Oxygen-glow discharge or ultraviolet–ozone treatments increase the surface oxygen concentration and work function in a strongly correlated manner. High temperature, vacuum annealing reduces both the surface oxygen and work function. With oxidation the occupied, density of states (DOS) at the Fermi level is also greatly reduced. This process is reversible by vacuum annealing and it appears that the oxygen concentration, work function, and DOS can be cycled by repeated oxygen treatments and annealing. These observations are interpreted in terms of the well-known, bulk properties of ITO.

345 citations

Journal ArticleDOI
TL;DR: In this article, a silicon carbide (SiC) nanowires on a silicon substrate were prepared using hot-filament-assisted chemical-vapor deposition with a solid silicon and carbon source.
Abstract: Silicon carbide (SiC) nanowires on a silicon substrate were prepared using hot-filament-assisted chemical-vapor deposition with a solid silicon and carbon source. The SiC nanowires show good field-emitting properties as revealed by the current–voltage characteristics. Together with its ease of preparation, these SiC nanowires are shown to have great potential in the area of electron field-emitting devices.

207 citations

Journal ArticleDOI
TL;DR: In this article, a continuous SiNW film was prepared by grinding the pieces of sponge-like SiNWs to powder, then dispersing and sticking the powder onto a Si wafer.
Abstract: Silicon nanowires (SiNWs) were synthesized using laser ablation. A continuous SiNW film was prepared by grinding the pieces of sponge-like SiNWs to powder, then dispersing and sticking the powder onto a Si wafer. The field emission characteristics of the SiNW film were studied based on current–voltage measurements and the Fowler–Nordheim equation. The electron field emission increased with decreasing diameter of SiNWs. A hydrogen plasma treatment of the SiNW film aimed at reducing the oxide overlayer improved the emission uniformity of the film.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the performance of noble metal-loaded CZY materials in terms of redox behaviors, oxygen mobilities, and oxygen storage capacities. And they suggested that by incorporating Y3+ ions into CZ and loading Pd, Pt, or Rh on CzY, one can enhance lattice oxygen mobility, Ce3+ ion concentration, and the oxygen uptake capacity of the CZy solid solution, generating a class of materials suitable for the catalytic conversion of automotive exhaust.

143 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations

Journal ArticleDOI
TL;DR: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes, and graphene analogues.
Abstract: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π–π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graph...

1,799 citations