scispace - formally typeset
Search or ask a question
Author

Kadriye Ozlem Saygi

Bio: Kadriye Ozlem Saygi is an academic researcher from Gaziosmanpaşa University. The author has contributed to research in topics: Solid phase extraction & Graphite furnace atomic absorption. The author has an hindex of 8, co-authored 12 publications receiving 1203 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The presented method has been applied to the determination of analytes in food and environmental samples with satisfactory results.

401 citations

Journal ArticleDOI
TL;DR: The presented biosorption procedure was applied to the determination of analytes in tomato leaves, bovine liver, boiled wheat, canned fish, black tea, lichen and natural water samples.

238 citations

Journal ArticleDOI
TL;DR: A method for solid phase extraction (SPE) of gold(III) using Dowex M 4195 chelating resin has been developed and has been applied in some real samples including water, soil and sediment samples.

142 citations

Journal ArticleDOI
TL;DR: A solid phase extraction procedure has been established for chromium speciation in natural water samples prior to determination by atomic absorption spectrometry, and the presented method was applied with satisfactory results.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the levels of trace elements in different types of baby foods consumed in Turkey were determined by flame and graphite furnace atomic absorption spectrometry, and the microwave digestion method was found to be the best.

113 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater.

6,844 citations

Journal ArticleDOI
TL;DR: Biosorption is a physico-chemical process and includes such mechanisms as absorption, adsorption, ion exchange, surface complexation and precipitation as discussed by the authors, which has been heralded as a promising biotechnology for pollutant removal from solution, and/or pollutant recovery.
Abstract: Biosorption may be simply defined as the removal of substances from solution by biological material. Such substances can be organic and inorganic, and in gaseous, soluble or insoluble forms. Biosorption is a physico-chemical process and includes such mechanisms as absorption, adsorption, ion exchange, surface complexation and precipitation. Biosorption is a property of both living and dead organisms (and their components) and has been heralded as a promising biotechnology for pollutant removal from solution, and/or pollutant recovery, for a number of years, because of its efficiency, simplicity, analogous operation to conventional ion exchange technology, and availability of biomass. Most biosorption studies have carried out on microbial systems, chiefly bacteria, microalgae and fungi, and with toxic metals and radionuclides, including actinides like uranium and thorium. However, practically all biological material has an affinity for metal species and a considerable amount of other research exists with macroalgae (seaweeds) as well as plant and animal biomass, waste organic sludges, and many other wastes or derived bio-products. While most biosorption research concerns metals and related substances, including radionuclides, the term is now applied to particulates and all manner of organic substances as well. However, despite continuing dramatic increases in published research on biosorption, there has been little or no exploitation in an industrial context. This article critically reviews aspects of biosorption research regarding the benefits, disadvantages, and future potential of biosorption as an industrial process, the rationale, scope and scientific value of biosorption research, and the significance of biosorption in other waste treatment processes and in the environment. Copyright © 2008 Society of Chemical Industry

1,063 citations

Journal ArticleDOI
TL;DR: Detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes) is presented.

1,053 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art of available technologies for water purification are reviewed and their field of application for heavy metal ion removal is discussed, as heavy metal ions are the most harmful and widespread contaminants.
Abstract: Water pollution is a global problem threatening the entire biosphere and affecting the life of many millions of people around the world. Not only is water pollution one of the foremost global risk factors for illness, diseases and death, but it also contributes to the continuous reduction of the available drinkable water worldwide. Delivering valuable solutions, which are easy to implement and affordable, often remains a challenge. Here we review the current state-of-the-art of available technologies for water purification and discuss their field of application for heavy metal ion removal, as heavy metal ions are the most harmful and widespread contaminants. We consider each technology in the context of sustainability, a largely neglected key factor, which may actually play a pivotal role in the implementation of each technology in real applications, and we introduce a compact index, the Ranking Efficiency Product (REP), to evaluate the efficiency and ease of implementation of the various technologies in this broader perspective. Emerging technologies, for which a detailed quantitative analysis and assessment is not yet possible according to this methodology, either due to scarcity or inhomogeneity of data, are discussed in the final part of the manuscript.

838 citations

Journal ArticleDOI
01 Nov 2010
TL;DR: Graphene oxide (GO) can be aggregated by Cu(2+) in aqueous solution with a huge Cu( 2+) absorption capacity, which is around 10 times of that of active carbon.
Abstract: Graphene oxide (GO) can be aggregated by Cu(2+) in aqueous solution with a huge Cu(2+) absorption capacity. The Cu(2+) causes GO sheets to be folded and also to form large aggregates that were characterized by confocal microscopy and atomic force microscopy. The folding/aggregation is most likely triggered by the coordination between GO and Cu(2+). The equilibrium Cu(2+) concentrations and equilibrium absorption capacity of GO were measured to estimate the maximum absorption capacity of GO for Cu(2+) and the absorption model. GO has a huge absorption capacity for Cu(2+), which is around 10 times of that of active carbon. Representative results are presented and the implication to Cu(2+) removal is discussed.

524 citations