scispace - formally typeset
Search or ask a question
Author

Kai Arulkumaran

Bio: Kai Arulkumaran is an academic researcher from Imperial College London. The author has contributed to research in topics: Reinforcement learning & Deep learning. The author has an hindex of 13, co-authored 30 publications receiving 3475 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higher-level understanding of the visual world as discussed by the authors.
Abstract: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higherlevel understanding of the visual world. Currently, deep learning is enabling reinforcement learning (RL) to scale to problems that were previously intractable, such as learning to play video games directly from pixels. DRL algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of RL, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via RL. To conclude, we describe several current areas of research within the field.

1,743 citations

Journal ArticleDOI
TL;DR: This survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic, and highlight the unique advantages of deep neural networks, focusing on visual understanding via RL.
Abstract: Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep $Q$-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.

1,707 citations

Journal ArticleDOI
TL;DR: Generative adversarial networks (GANs) as mentioned in this paper provide a way to learn deep representations without extensively annotated training data by deriving backpropagation signals through a competitive process involving a pair of networks.
Abstract: Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this by deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image superresolution, and classification. The aim of this review article is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.

1,413 citations

Journal ArticleDOI
TL;DR: The aim of this review article is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible, and point to remaining challenges in their theory and application.
Abstract: Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.

753 citations

Posted Content
TL;DR: It is shown that a heuristic called minimum information constraint that has been shown to mitigate this effect in VAEs can also be applied to improve unsupervised clustering performance with this variant of the variational autoencoder model with a Gaussian mixture as a prior distribution.
Abstract: We study a variant of the variational autoencoder model (VAE) with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models. We observe that the known problem of over-regularisation that has been shown to arise in regular VAEs also manifests itself in our model and leads to cluster degeneracy. We show that a heuristic called minimum information constraint that has been shown to mitigate this effect in VAEs can also be applied to improve unsupervised clustering performance with our model. Furthermore we analyse the effect of this heuristic and provide an intuition of the various processes with the help of visualizations. Finally, we demonstrate the performance of our model on synthetic data, MNIST and SVHN, showing that the obtained clusters are distinct, interpretable and result in achieving competitive performance on unsupervised clustering to the state-of-the-art results.

521 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Posted Content
TL;DR: It is argued that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective.
Abstract: Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

2,170 citations

Journal ArticleDOI
TL;DR: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higher-level understanding of the visual world as discussed by the authors.
Abstract: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higherlevel understanding of the visual world. Currently, deep learning is enabling reinforcement learning (RL) to scale to problems that were previously intractable, such as learning to play video games directly from pixels. DRL algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of RL, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via RL. To conclude, we describe several current areas of research within the field.

1,743 citations

Journal ArticleDOI
TL;DR: This survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic, and highlight the unique advantages of deep neural networks, focusing on visual understanding via RL.
Abstract: Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep $Q$-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.

1,707 citations