scispace - formally typeset
Search or ask a question
Author

Kai Chen

Bio: Kai Chen is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Superalloy & Electromigration. The author has an hindex of 33, co-authored 103 publications receiving 3274 citations. Previous affiliations of Kai Chen include Lawrence Berkeley National Laboratory & General Atomics.


Papers
More filters
Journal ArticleDOI
TL;DR: The fundamental embryonic structure of deformation twins is revealed using in situ mechanical testing of magnesium single crystals in a transmission electron microscope, shedding light on the origin of twinning-induced plasticity and transformation toughening, critical to the development of advanced structural alloys with high strength, ductility, and toughness.
Abstract: We have revealed the fundamental embryonic structure of deformation twins using in situ mechanical testing of magnesium single crystals in a transmission electron microscope. This structure consists of an array of twin-related laths on the scale of several nanometers. A computational model demonstrates that this structure should be a generic feature at the incipient stage of deformation twinning when there are correlated nucleation events. Our results shed light on the origin of twinning-induced plasticity and transformation toughening, critical to the development of advanced structural alloys with high strength, ductility, and toughness.

225 citations

Journal ArticleDOI
TL;DR: This work shows that the actively tuning strain in micro/nanoscale electronic materials provides an effective route to investigate their fundamental properties beyond what can be accessed in their bulk counterpart.
Abstract: Single-crystal micro- and nanomaterials often exhibit higher yield strength than their bulk counterparts. This enhancement is widely recognized in structural materials but is rarely exploited to probe fundamental physics of electronic materials. Vanadium dioxide exhibits coupled electronic and structural phase transitions that involve different structures existing at different strain states. Full understanding of the driving mechanism of these coupled transitions necessitates concurrent structural and electrical measurements over a wide phase space. Taking advantages of the superior mechanical property of micro/nanocrystals of VO2, we map and explore its stress-temperature phase diagram over a phase space that is more than an order of magnitude broader than previously attained. New structural and electronic aspects were observed crossing phase boundaries at high-strain states. Our work shows that the actively tuning strain in micro/nanoscale electronic materials provides an effective route to investigate ...

214 citations

Journal ArticleDOI
TL;DR: A new way to investigate nanoscale mechanics and dynamics of structural phase transitions in general is demonstrated, allowing for evaluation of the domain wall pinning potential energy.
Abstract: The elastic properties and structural phase transitions of individual VO2 nanowires were studied using an in situ push-to-pull microelectromechanical device to realize quantitative tensile analysis in a transmission electron microscope and a synchrotron X-ray microdiffraction beamline. A plateau was detected in the stress–strain curve, signifying superelasticity of the nanowire arising from the M1–M2 structural phase transition. The transition was induced and controlled by uniaxial tension. The transition dynamics were characterized by a one-dimensionally aligned domain structure with pinning and depinning of the domain walls along the nanowire. From the stress–strain dependence the Young’s moduli of the VO2 M1 and M2 phases were estimated to be 128 ± 10 and 156 ± 10 GPa, respectively. Single pinning and depinning events of M1–M2 domain wall were observed in the superelastic regime, allowing for evaluation of the domain wall pinning potential energy. This study demonstrates a new way to investigate nanosc...

200 citations

Journal ArticleDOI
30 Oct 2015-Science
TL;DR: The discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order is reported, via transport and spatially resolved microwave impedance microscopy.
Abstract: Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smooth morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order.

175 citations

Journal ArticleDOI
TL;DR: A new facility for microdiffraction strain measurements and microfluorescence mapping has been built at the advanced light source of the Lawrence Berkeley National Laboratory and allows a variety of experiments, which have in common the need of spatial resolution.
Abstract: A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 microm spot of approximately 5x10(9) photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 microm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (approximately 0.2 microm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10(-5) strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (approximately 150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis.

172 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of metal-based material classes whose properties as a function of external size have been investigated and provide a critical discussion on the combined effects of intrinsic and extrinsic sizes on the material deformation behavior.

1,515 citations

01 Jan 1987

991 citations