scispace - formally typeset
Search or ask a question
Author

Kai Li

Other affiliations: Wuhan University, NEC
Bio: Kai Li is an academic researcher from Northeastern University. The author has contributed to research in topics: Line segment & Feature (computer vision). The author has an hindex of 17, co-authored 44 publications receiving 3362 citations. Previous affiliations of Kai Li include Wuhan University & NEC.

Papers
More filters
Posted Content
Yulun Zhang1, Kunpeng Li1, Kai Li1, Lichen Wang1, Bineng Zhong1, Yun Fu1 
TL;DR: This work proposes a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections, and proposes a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels.
Abstract: Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.

2,025 citations

Book ChapterDOI
Yulun Zhang1, Kunpeng Li1, Kai Li1, Lichen Wang1, Bineng Zhong1, Yun Fu1 
08 Sep 2018
TL;DR: Very deep residual channel attention networks (RCAN) as mentioned in this paper proposes a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections Each residual group contains some residual blocks with short skip connections.
Abstract: Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR) However, we observe that deeper networks for image SR are more difficult to train The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs To solve these problems, we propose the very deep residual channel attention networks (RCAN) Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections Each residual group contains some residual blocks with short skip connections Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods

1,991 citations

Proceedings ArticleDOI
Kunpeng Li1, Yulun Zhang1, Kai Li1, Yuanyuan Li1, Yun Fu1 
01 Oct 2019
TL;DR: A simple and interpretable reasoning model to generate visual representation that captures key objects and semantic concepts of a scene that outperforms the current best method for image retrieval and caption retrieval on MS-COCO and Flickr30K datasets.
Abstract: Image-text matching has been a hot research topic bridging the vision and language areas. It remains challenging because the current representation of image usually lacks global semantic concepts as in its corresponding text caption. To address this issue, we propose a simple and interpretable reasoning model to generate visual representation that captures key objects and semantic concepts of a scene. Specifically, we first build up connections between image regions and perform reasoning with Graph Convolutional Networks to generate features with semantic relationships. Then, we propose to use the gate and memory mechanism to perform global semantic reasoning on these relationship-enhanced features, select the discriminative information and gradually generate the representation for the whole scene. Experiments validate that our method achieves a new state-of-the-art for the image-text matching on MS-COCO and Flickr30K datasets. It outperforms the current best method by 6.8% relatively for image retrieval and 4.8% relatively for caption retrieval on MS-COCO (Recall@1 using 1K test set). On Flickr30K, our model improves image retrieval by 12.6% relatively and caption retrieval by 5.8% relatively (Recall@1).

393 citations

Posted Content
Yulun Zhang1, Kunpeng Li1, Kai Li1, Bineng Zhong2, Yun Fu1 
TL;DR: The proposed residual local and non-local attention learning to train the very deep network is generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution.
Abstract: In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.

257 citations

Proceedings Article
Yulun Zhang1, Kunpeng Li1, Kai Li1, Bineng Zhong2, Yun Fu1 
01 Jan 2019
TL;DR: Zhang et al. as discussed by the authors proposed a residual non-local attention network for high-quality image restoration, which designed a trunk branch and (non-) local mask branch in each attention block.
Abstract: In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.

230 citations


Cited by
More filters
Book ChapterDOI
08 Sep 2018
TL;DR: ESRGAN as mentioned in this paper improves the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery, and won the first place in the PIRM2018-SR Challenge (region 3).
Abstract: The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN – network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge (region 3) with the best perceptual index. The code is available at https://github.com/xinntao/ESRGAN.

2,298 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: SKNet as discussed by the authors proposes a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information, which can capture target objects with different scales.
Abstract: In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.

1,401 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: Experimental results demonstrate the superiority of the SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.
Abstract: Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods mainly focus on wider or deeper architecture design, neglecting to explore the feature correlations of intermediate layers, hence hindering the representational power of CNNs. To address this issue, in this paper, we propose a second-order attention network (SAN) for more powerful feature expression and feature correlation learning. Specifically, a novel train- able second-order channel attention (SOCA) module is developed to adaptively rescale the channel-wise features by using second-order feature statistics for more discriminative representations. Furthermore, we present a non-locally enhanced residual group (NLRG) structure, which not only incorporates non-local operations to capture long-distance spatial contextual information, but also contains repeated local-source residual attention groups (LSRAG) to learn increasingly abstract feature representations. Experimental results demonstrate the superiority of our SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.

1,219 citations

Posted Content
TL;DR: This work thoroughly study three key components of SRGAN – network architecture, adversarial loss and perceptual loss, and improves each of them to derive an Enhanced SRGAN (ESRGAN), which achieves consistently better visual quality with more realistic and natural textures than SRGAN.
Abstract: The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN - network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge. The code is available at this https URL .

915 citations