scispace - formally typeset
Search or ask a question
Author

Kai Liu

Other affiliations: Nankai University, UNESCO, East China Normal University  ...read more
Bio: Kai Liu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 65, co-authored 689 publications receiving 17838 citations. Previous affiliations of Kai Liu include Nankai University & UNESCO.


Papers
More filters
Journal ArticleDOI
M. Ablikim, M. N. Achasov1, Xiaocong Ai, O. Albayrak2  +365 moreInstitutions (50)
TL;DR: In this article, the process e(+)e(-) -> pi(+)pi(-) J/psi at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider was studied.
Abstract: We study the process e(+)e(-) -> pi(+)pi(-) J/psi at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be (62.9 +/- 1.9 +/- 3.7) pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/c(2) in the pi(+/-) J/psi mass spectrum, which we refer to as the Z(c)(3900). If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the pi(+/-) J/psi invariant mass spectrum, neglecting interference, results in a mass of (3899.0 +/- 3.6 +/- 4.9) MeV/c(2) and a width of (46 +/- 10 +/- 20) MeV. Its production ratio is measured to be R = (sigma(e(+)e(-) -> pi(+/-) Z(c)(3900)(-/+) -> pi(+)pi(-) J/psi)/sigma(e(+)e(-) -> pi(+)pi(-) J/psi)) = (21.5 +/- 3.3 +/- 7.5)%. In all measurements the first errors are statistical and the second are systematic.

677 citations

Journal ArticleDOI
TL;DR: An injectable and self-healing collagen-gold hybrid hydrogel is spontaneously formed by electrostatic self-assembly and subsequent biomineralization, showing enhanced antitumor efficacy.
Abstract: An injectable and self-healing collagen-gold hybrid hydrogel is spontaneously formed by electrostatic self-assembly and subsequent biomineralization. It is demonstrated that such collagen-based hydrogels may be used as an injectable material for local delivery of therapeutic agents, showing enhanced antitumor efficacy.

665 citations

Journal ArticleDOI
TL;DR: This review focuses on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptide, and amyloid-relevant peptides.
Abstract: Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π–π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

657 citations

Journal ArticleDOI
TL;DR: The assembled nanodrugs exhibit multiple favorable therapeutic features, including tunable size, high loading efficiency, and on-demand drug release responding to pH, surfactant, and enzyme stimuli, leading to almost complete tumor eradication in mice receiving a single drug dose and a single exposure to light.
Abstract: Peptide-tuned self-assembly of functional components offers a strategy towards improved properties and unique functions of materials, but the requirement of many different functions and a lack of understanding of complex structures present a high barrier for applications. Herein, we report a photosensitive drug delivery system for photodynamic therapy (PDT) by a simple dipeptide- or amphiphilic amino-acid-tuned self-assembly of photosensitizers (PSs). The assembled nanodrugs exhibit multiple favorable therapeutic features, including tunable size, high loading efficiency, and on-demand drug release responding to pH, surfactant, and enzyme stimuli, as well as preferable cellular uptake and biodistribution. These features result in greatly enhanced PDT efficacy invitro and invivo, leading to almost complete tumor eradication in mice receiving a single drug dose and a single exposure to light.

440 citations

Journal ArticleDOI
TL;DR: An estimation of the ecological risk from SAMPs indicated that a minor ecological consequence was present, necessitating further evaluation of SAMPs pollution, and preliminary evaluation indicated that textile clothes are likely major source of the airborne microplastics.

430 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations