scispace - formally typeset
Search or ask a question
Author

Kai Zeng

Bio: Kai Zeng is an academic researcher from University of Western Australia. The author has contributed to research in topics: Electrolysis of water & Alkaline water electrolysis. The author has an hindex of 3, co-authored 7 publications receiving 2084 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the current state of knowledge and technology of hydrogen production by water electrolysis and identifies areas where R&D effort is needed in order to improve this technology.

2,396 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of electrolytic gas bubbles and their effect on the cell voltage in water electrolysis were studied theoretically and experimentally, and it was found that increasing the electrode potential strengthened the force due to the interfacial tension and increased the critical diameter while increasing the electrolyte concentration led to a reduction.
Abstract: The behavior of electrolytic gas bubbles and their effect on the cell voltage in water electrolysis were studied theoretically and experimentally. A fundamental force analysis was employed to predict the critical diameter for the departure of the electrolytic gas bubbles. Good agreement between the predictions and observations was obtained. It was found that increasing the electrode potential strengthened the force due to the interfacial tension and increased the critical diameter, while increasing the electrolyte concentration led to a reduction. This was explained by the changes in both the contact angle and surface tension. Many more fine gas bubbles were observed at high current density, which was explained by that the enhanced natural convection forced bubbles to depart prematurely. The cell voltage was only slightly reduced by the electrolyte circulation, which reduced the critical diameter for bubble departure. This confirmed that the layer of fine bubbles represented a significant energy barrier, ...

128 citations

Journal ArticleDOI
15 Jan 2014-Fuel
TL;DR: In this article, surface modifications to Ni-based electrodes were made by means of mechanical polishing using sandpapers of different sand grain sizes and chemical coating using electrochemical deposition of Ni and Co.

53 citations

Book ChapterDOI
01 Jan 2015

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Abstract: There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

3,976 citations

Journal ArticleDOI
26 Sep 2014-Science
TL;DR: It is shown that a pair of perovskite cells connected in series can power the electrochemical breakdown of water into hydrogen and oxygen efficiently, and the combination of the two yields a water-splitting photocurrent density and a solar-to-hydrogen efficiency of 12.3%.
Abstract: Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.

2,140 citations

Journal ArticleDOI
TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
Abstract: Water electrolysis is considered as the most promising technology for hydrogen production. Much research has been devoted to developing efficient electrocatalysts for hydrogen production via the hydrogen evolution reaction (HER) and oxygen production via the oxygen evolution reaction (OER). The optimum electrocatalysts can drive down the energy costs needed for water splitting via lowering the overpotential. A number of cobalt (Co)-based materials have been developed over past years as non-noble-metal heterogeneous electrocatalysts for HER and OER. Recent progress in this field is summarized here, especially highlighting several important bifunctional catalysts. Various approaches to improve or optimize the electrocatalysts are introduced. Finally, the current existing challenges and the future working directions for enhancing the performance of Co-implicated electrocatalysts are proposed.

1,963 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential is presented in this article.
Abstract: Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225 000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world.

1,938 citations

Journal ArticleDOI
TL;DR: The as-prepared three-dimensional structured electrodes developed by electrodepositing amorphous mesoporous nickel–iron composite nanosheets directly onto macroporous nickel foam substrates is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of the knowledge.
Abstract: Development of efficient and affordable oxygen evolution catalysts is essential for large-scale electrolytic water splitting. Here, the authors report mesoporous nickel–iron composite nanosheets loaded on macroporous nickel foam substrates, and evaluate their electrocatalytic oxygen evolution in basic media.

1,583 citations