scispace - formally typeset
Search or ask a question
Author

Kai Zhang

Bio: Kai Zhang is an academic researcher from Nanjing University of Aeronautics and Astronautics. The author has contributed to research in topics: Photocatalysis & Responsivity. The author has an hindex of 28, co-authored 77 publications receiving 3511 citations. Previous affiliations of Kai Zhang include Xi'an Jiaotong University & Ocean University of China.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the recent research progress on graphene-based materials for hydrogen evolution from light-driven water splitting and the comparison between graphene and other carbon materials in solar water splitting is made.
Abstract: Hydrogen production from solar water splitting has been considered as an ultimate solution to the energy and environmental issues. Over the past few years, graphene has made great contribution to improving the light-driven hydrogen generation performance. This article provides a comprehensive overview of the recent research progress on graphene-based materials for hydrogen evolution from light-driven water splitting. It begins with a brief introduction of the current status and basic principles of hydrogen generation from solar water splitting, and tailoring properties of graphene for application in this area. Then, the roles of graphene in hydrogen generation reaction, including an electron acceptor and transporter, a cocatalyst, a photocatalyst, and a photosensitizer, are elaborated respectively. After that, the comparison between graphene and other carbon materials in solar water splitting is made. Last, this review is concluded with remarks on some challenges and perspectives in this emerging field.

680 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present recent research progress in the development of visible light driven sulphide photocatalysts, focusing on the expansion of solar spectrum response and enhancement of charge separation efficiency.

451 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene acceptor, possessing a very low bandgap of 1.34 eV and a high-lying lowest unoccupied molecular orbital level of -3.95 eV, is designed and synthesized by introducing electron-donating alkoxy groups to the backbone of a conjugated small molecule.
Abstract: A novel non-fullerene acceptor, possessing a very low bandgap of 1.34 eV and a high-lying lowest unoccupied molecular orbital level of -3.95 eV, is designed and synthesized by introducing electron-donating alkoxy groups to the backbone of a conjugated small molecule. Impressive power conversion efficiencies of 8.4% and 10.7% are obtained for fabricated single and tandem polymer solar cells.

413 citations

Journal ArticleDOI
TL;DR: High-performance MoS2 transistors are developed using atomic hexagonal boron nitride as a tunneling layer to reduce the Schottky barrier and achieve low contact resistance between metal and MoS1.
Abstract: High-performance MoS2 transistors are developed using atomic hexagonal boron nitride as a tunneling layer to reduce the Schottky barrier and achieve low contact resistance between metal and MoS2 . Benefiting from the ultrathin tunneling layer within 0.6 nm, the Schottky barrier is significantly reduced from 158 to 31 meV with small tunneling resistance.

380 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art for the research of photocatalytic hydrogen production, both outcomes and challenges in this field, were briefly reviewed and the exiting challenges and difficulties for this technology to proceed from successful laboratory photocatalysis set-up up to an industrially relevant scale are also proposed.

275 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting.
Abstract: Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research.

1,990 citations

Journal ArticleDOI
TL;DR: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs) as mentioned in this paper.
Abstract: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.

1,975 citations