scispace - formally typeset
Search or ask a question
Author

Kaicheng Jia

Bio: Kaicheng Jia is an academic researcher from Peking University. The author has contributed to research in topics: Graphene & Materials science. The author has an hindex of 11, co-authored 25 publications receiving 412 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The authors elucidate the origin of contaminations in CVD-grown graphene and devise a strategy towards the scalable production of ultra-clean graphene with >99% clean regions and low contact resistance.
Abstract: Impurities produced during the synthesis process of a material pose detrimental impacts upon the intrinsic properties and device performances of the as-obtained product. This effect is especially pronounced in graphene, where surface contamination has long been a critical, unresolved issue, given graphene's two-dimensionality. Here we report the origins of surface contamination of graphene, which is primarily rooted in chemical vapour deposition production at elevated temperatures, rather than during transfer and storage. In turn, we demonstrate a design of Cu substrate architecture towards the scalable production of super-clean graphene (>99% clean regions). The readily available, super-clean graphene sheets contribute to an enhancement in the optical transparency and thermal conductivity, an exceptionally lower-level of electrical contact resistance and intrinsically hydrophilic nature. This work not only opens up frontiers for graphene growth but also provides exciting opportunities for the utilization of as-obtained super-clean graphene films for advanced applications.

128 citations

Journal ArticleDOI
TL;DR: For the first time, the preparation of a submeter-sized, vertically stacked heterojunction of lead iodide/graphene on a flexible polyethylene terephthalate (PET) film by vapor deposition of PbI2 on graphene/PET substrate at a temperature lower than 200 °C is demonstrated.
Abstract: Heterostructures based on graphene and other 2D atomic crystals exhibit fascinating properties and intriguing potential in flexible optoelectronics, where graphene films function as transparent electrodes and other building blocks are used as photoactive materials. However, large-scale production of such heterostructures with superior performance is still in early stages. Herein, for the first time, the preparation of a submeter-sized, vertically stacked heterojunction of lead iodide (PbI2 )/graphene on a flexible polyethylene terephthalate (PET) film by vapor deposition of PbI2 on graphene/PET substrate at a temperature lower than 200 °C is demonstrated. This film is subsequently used to fabricate bendable graphene/PbI2 /graphene sandwiched photodetectors, which exhibit high responsivity (45 A W-1 cm-2 ), fast response (35 µs rise, 20 µs decay), and high-resolution imaging capability (1 µm). This study may pave a facile pathway for scalable production of high-performance flexible devices.

92 citations

Journal ArticleDOI
Jincan Zhang1, Li Lin1, Kaicheng Jia1, Luzhao Sun1, Hailin Peng1, Zhongfan Liu1 
TL;DR: Detailed synthesis strategies, corresponding mechanisms, and key parameters in the representative methods of these two approaches are separately reviewed, with the aim of providing comprehensive knowledge and a snapshot of the latest status of controlled growth of single-crystal graphene films.
Abstract: Grain boundaries produced during material synthesis affect both the intrinsic properties of materials and their potential for high-end applications. This effect is commonly observed in graphene film grown using chemical vapor deposition and therefore caused intense interest in controlled growth of grain-boundary-free graphene single crystals in the past ten years. The main methods for enlarging graphene domain size and reducing graphene grain boundary density are classified into single-seed and multiseed approaches, wherein reduction of nucleation density and alignment of nucleation orientation are respectively realized in the nucleation stage. On this basis, detailed synthesis strategies, corresponding mechanisms, and key parameters in the representative methods of these two approaches are separately reviewed, with the aim of providing comprehensive knowledge and a snapshot of the latest status of controlled growth of single-crystal graphene films. Finally, perspectives on opportunities and challenges in synthesizing large-area single-crystal graphene films are discussed.

89 citations

Journal ArticleDOI
TL;DR: A rapid growth of graphitic nitrogen cluster–doped monolayer graphene single crystals on Cu foil with remarkable carrier mobility of 13,000 cm2 V−1 s−1 and a greatly reduced sheet resistance of only 130 ohms square−1 is demonstrated.
Abstract: Directly incorporating heteroatoms into the hexagonal lattice of graphene during growth has been widely used to tune its electrical properties with superior doping stability, uniformity, and scalability. However the introduction of scattering centers limits this technique because of reduced carrier mobilities and conductivities of the resulting material. Here, we demonstrate a rapid growth of graphitic nitrogen cluster–doped monolayer graphene single crystals on Cu foil with remarkable carrier mobility of 13,000 cm2 V−1 s−1 and a greatly reduced sheet resistance of only 130 ohms square−1. The exceedingly large carrier mobility with high n-doping level was realized by (i) incorporation of nitrogen-terminated carbon clusters to suppress the carrier scattering and (ii) elimination of all defective pyridinic nitrogen centers by oxygen etching. Our study opens up an avenue for the growth of high-mobility/conductivity doped graphene with tunable work functions for scalable graphene-based electronic and device applications.

68 citations

Journal ArticleDOI
TL;DR: A new type of cryo-EM grids using bioactive-ligand functionalized single-crystalline monolayer graphene membranes as supporting films and functionalized graphene membrane (FGM) grids exhibit specific binding affinity to histidine (His)-tagged proteins and complexes are designed and produced.
Abstract: Single-particle cryo-electron microscopy (cryo-EM) has become one of the most essential tools to understand biological mechanisms at molecular level. A major bottleneck in cryo-EM technique is the preparation of good specimens that embed biological macromolecules in a thin layer of vitreous ice. In the canonical cryo-EM specimen preparation method, biological macromolecules tend to be adsorbed to the air-water interface, causing partial denaturation and/or preferential orientations. In this work, we have designed and produced a new type of cryo-EM grids using bioactive-ligand functionalized single-crystalline monolayer graphene membranes as supporting films. The functionalized graphene membrane (FGM) grids exhibit specific binding affinity to histidine (His)-tagged proteins and complexes. In cryo-EM, the FGM grids generate relatively low background for imaging and selectively anchor 20S proteasomes to the supporting film surface, enabling near-atomic-resolution 3D reconstruction of the complex. We envision that the FGM grids could benefit single particle cryo-EM specimen preparation with high reproducibility and robustness, therefore enhancing the efficiency and throughput of high-resolution cryo-EM structural determination.

60 citations


Cited by
More filters
Journal Article
TL;DR: The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling.
Abstract: Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3, and CsPbBr3. We observed hot fluorescence emission from energetic carriers with ~102-picosecond lifetimes in CH3NH3PbBr3 or CH(NH2)2PbBr3, but not in CsPbBr3. The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit.

426 citations

Journal ArticleDOI
07 Aug 2020-Science
TL;DR: It is reported that introducing silicon during chemical vapor deposition growth of molybdenum nitride passivates the surface and prevents island formation, which enabled the growth of centimeter-scale monolayer films of MoSi2N4.
Abstract: Identifying two-dimensional layered materials in the monolayer limit has led to discoveries of numerous new phenomena and unusual properties. We introduced elemental silicon during chemical vapor deposition growth of nonlayered molybdenum nitride to passivate its surface, which enabled the growth of centimeter-scale monolayer films of MoSi2N4 This monolayer was built up by septuple atomic layers of N-Si-N-Mo-N-Si-N, which can be viewed as a MoN2 layer sandwiched between two Si-N bilayers. This material exhibited semiconducting behavior (bandgap ~1.94 electron volts), high strength (~66 gigapascals), and excellent ambient stability. Density functional theory calculations predict a large family of such monolayer structured two-dimensional layered materials, including semiconductors, metals, and magnetic half-metals.

419 citations

Journal ArticleDOI
14 Jan 2021
TL;DR: An overview of the chemical vapour deposition (CVD) technique, including instrument construction, process control, material characterization, and reproducibility issues, is provided in this article by taking graphene, 2D transition metal dichalcogenides (TMDs), and polymeric thin films as typical examples.
Abstract: Chemical vapour deposition (CVD) is a powerful technology for producing high-quality solid thin films and coatings Although widely used in modern industries, it is continuously being developed as it is adapted to new materials Today, CVD synthesis is being pushed to new heights with the precise manufacturing of both inorganic thin films of 2D materials and high-purity polymeric thin films that can be conformally deposited on various substrates In this Primer, an overview of the CVD technique, including instrument construction, process control, material characterization and reproducibility issues, is provided By taking graphene, 2D transition metal dichalcogenides (TMDs) and polymeric thin films as typical examples, the best practices for experimentation involving substrate pretreatment, high-temperature growth and post-growth processes are presented Recent advances and scaling-up challenges are also highlighted By analysing current limitations and optimizations, we also provide insight into possible future directions for the method, including reactor design for high-throughput and low-temperature growth of thin films This Primer on chemical vapour deposition summarizes current and emerging experimental set-ups as well as common characterization approaches used to determine thin film formation and quality as applied to graphene and other novel 2D materials

189 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: In this paper, the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules.
Abstract: Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.

157 citations

Journal Article
TL;DR: The strong and layer-dependent optical transitions of graphene and the tunability by simple electrical gating hold promise for new applications in infrared optics and optoelectronics.
Abstract: Two-dimensional graphene monolayers and bilayers exhibit fascinating electrical transport behaviors. Using infrared spectroscopy, we find that they also have strong interband transitions and that their optical transitions can be substantially modified through electrical gating, much like electrical transport in field-effect transistors. This gate dependence of interband transitions adds a valuable dimension for optically probing graphene band structure. For a graphene monolayer, it yields directly the linear band dispersion of Dirac fermions, whereas in a bilayer, it reveals a dominating van Hove singularity arising from interlayer coupling. The strong and layer-dependent optical transitions of graphene and the tunability by simple electrical gating hold promise for new applications in infrared optics and optoelectronics.

146 citations