scispace - formally typeset
Search or ask a question
Author

Kaijie Wu

Bio: Kaijie Wu is an academic researcher from New York University. The author has contributed to research in topics: Error detection and correction & Flash memory. The author has an hindex of 25, co-authored 86 publications receiving 2663 citations. Previous affiliations of Kaijie Wu include University of Illinois at Chicago & Chongqing University.


Papers
More filters
Proceedings ArticleDOI
26 Oct 2004
TL;DR: It is shown that scan chains can be used as a side channel to recover secret keys from a hardware implementation of the Data Encryption Standard (DES) by loading pairs of known plaintexts with one-bit difference in the normal mode and scanning out the internal state in the test mode.
Abstract: Scan based test is a double edged sword. On one hand, it is a powerful test technique. On the other hand, it is an equally powerful attack tool. We show that scan chains can be used as a side channel to recover secret keys from a hardware implementation of the Data Encryption Standard (DES). By loading pairs of known plaintexts with one-bit difference in the normal mode and then scanning out the internal state in the test mode, we first determine the position of all scan elements in the scan chain. Then, based on a systematic analysis of the structure of the nonlinear substitution boxes, and using three additional plaintexts we discover the DES secret key. Finally, some assumptions in the attack are discussed.

322 citations

Journal ArticleDOI
TL;DR: The authors used a hardware implementation of the advanced encryption standard to show that the traditional scan DFT scheme can compromise the secret key, and showed that by using secure-scan DFT, neither thesecret key nor the testability of the AES implementation is compromised.
Abstract: Scan-based design for test (DFT) is a powerful testing scheme, but it can be used to retrieve the secrets stored in a crypto chip, thus compromising its security. On one hand, sacrificing the security for testability by using a traditional scan-based DFT restricts its use in privacy sensitive applications. On the other hand, sacrificing the testability for security by abandoning the scan-based DFT hurts the product quality. The security of a crypto chip comes from the small secret key stored in a few registers, and the testability of a crypto chip comes from the data path and control path implementing the crypto algorithm. Based on this key observation, the authors propose a novel scan DFT architecture called secure scan that maintains the high test quality of traditional scan DFT without compromising the security. They used a hardware implementation of the advanced encryption standard to show that the traditional scan DFT scheme can compromise the secret key. They then showed that by using secure-scan DFT, neither the secret key nor the testability of the AES implementation is compromised

231 citations

Journal ArticleDOI
TL;DR: This paper analyzes the reasons of the failures of adder designs using QCA technology, and proposes adders that exploit proper clocking schemes.
Abstract: Quantum-dot cellular automata (QCA) is attracting a lot of attention due to its extremely small feature size and ultralow power consumption. Up to now, several adder designs using QCA technology have been proposed. However, it was found that not all of the designs function properly. This paper analyzes the reasons of the failures and proposes adders that exploit proper clocking schemes

211 citations

Journal ArticleDOI
TL;DR: The authors investigate systematic approaches to low-cost low-latency CED techniques for symmetric encryption algorithms based on inverse relationships that exist between encryption and decryption at algorithm level, round level, and operation level and develop CED architectures that explore tradeoffs among area overhead, performance penalty, and fault detection latency.
Abstract: Fault-based side-channel cryptanalysis is very effective against symmetric and asymmetric encryption algorithms. Although straightforward hardware and time redundancy-based concurrent error detection (CED) architectures can be used to thwart such attacks, they entail significant overheads (either area or performance). The authors investigate systematic approaches to low-cost low-latency CED techniques for symmetric encryption algorithms based on inverse relationships that exist between encryption and decryption at algorithm level, round level, and operation level and develop CED architectures that explore tradeoffs among area overhead, performance penalty, and fault detection latency. The proposed techniques have been validated on FPGA implementations of Advanced Encryption Standard (AES) finalist 128-bit symmetric encryption algorithms.

210 citations

Proceedings ArticleDOI
13 Jun 2005
TL;DR: The authors used a hardware implementation of the advanced encryption standard to show that the traditional scan DFT scheme can compromise the secret key, and showed that by using secure-scan DFT, neither thesecret key nor the testability of the AES implementation is compromised.
Abstract: Scan-based design-for-test (DFT) is a powerful testing scheme, but it can be used to retrieve the secrets stored in a crypto chip thus compromising its security. On one hand, sacrificing security for testability by using traditional scan-based DFT restricts its use in privacy sensitive applications. On the other hand, sacrificing testability for security by abandoning scan-based DFT hurts product quality. The security of a crypto chip comes from the small secret key stored in a few registers and the testability of a crypto chip comes from the data path and control path implementing the crypto algorithm. Based on this key observation, we propose a novel scan DFT architecture called secure scan that maintains the high test quality of traditional scan DFT without compromising the security. We used a hardware implementation of the advanced encryption standard (AES) to show that the traditional scan DFT scheme can compromise the secret key. We then showed that by using secure scan DFT, neither the secret key nor the testability of the AES implementation is compromised.

205 citations


Cited by
More filters
01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Journal ArticleDOI
TL;DR: The relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber- physical world, are explored and existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development.
Abstract: Fog/edge computing has been proposed to be integrated with Internet of Things (IoT) to enable computing services devices deployed at network edge, aiming to improve the user’s experience and resilience of the services in case of failures. With the advantage of distributed architecture and close to end-users, fog/edge computing can provide faster response and greater quality of service for IoT applications. Thus, fog/edge computing-based IoT becomes future infrastructure on IoT development. To develop fog/edge computing-based IoT infrastructure, the architecture, enabling techniques, and issues related to IoT should be investigated first, and then the integration of fog/edge computing and IoT should be explored. To this end, this paper conducts a comprehensive overview of IoT with respect to system architecture, enabling technologies, security and privacy issues, and present the integration of fog/edge computing and IoT, and applications. Particularly, this paper first explores the relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber-physical world. Then, existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development. To investigate the fog/edge computing-based IoT, this paper also investigate the relationship between IoT and fog/edge computing, and discuss issues in fog/edge computing-based IoT. Finally, several applications, including the smart grid, smart transportation, and smart cities, are presented to demonstrate how fog/edge computing-based IoT to be implemented in real-world applications.

2,057 citations

Journal ArticleDOI
TL;DR: The paper presents a brief overview of smart cities, followed by the features and characteristics, generic architecture, composition, and real-world implementations ofSmart cities, and some challenges and opportunities identified through extensive literature survey on smart cities.

925 citations

Journal Article
TL;DR: In this article, Stann et al. present RMST (Reliable Multi-Segment Transport), a new transport layer for Directed Diffusion, which provides guaranteed delivery and fragmentation/reassembly for applications that require them.
Abstract: Appearing in 1st IEEE International Workshop on Sensor Net Protocols and Applications (SNPA). Anchorage, Alaska, USA. May 11, 2003. RMST: Reliable Data Transport in Sensor Networks Fred Stann, John Heidemann Abstract – Reliable data transport in wireless sensor networks is a multifaceted problem influenced by the physical, MAC, network, and transport layers. Because sensor networks are subject to strict resource constraints and are deployed by single organizations, they encourage revisiting traditional layering and are less bound by standardized placement of services such as reliability. This paper presents analysis and experiments resulting in specific recommendations for implementing reliable data transport in sensor nets. To explore reliability at the transport layer, we present RMST (Reliable Multi- Segment Transport), a new transport layer for Directed Diffusion. RMST provides guaranteed delivery and fragmentation/reassembly for applications that require them. RMST is a selective NACK-based protocol that can be configured for in-network caching and repair. Second, these energy constraints, plus relatively low wireless bandwidths, make in-network processing both feasible and desirable [3]. Third, because nodes in sensor networks are usually collaborating towards a common task, rather than representing independent users, optimization of the shared network focuses on throughput rather than fairness. Finally, because sensor networks are often deployed by a single organization with inexpensive hardware, there is less need for interoperability with existing standards. For all of these reasons, sensor networks provide an environment that encourages rethinking the structure of traditional communications protocols. The main contribution is an evaluation of the placement of reliability for data transport at different levels of the protocol stack. We consider implementing reliability in the MAC, transport layer, application, and combinations of these. We conclude that reliability is important at the MAC layer and the transport layer. MAC-level reliability is important not just to provide hop-by-hop error recovery for the transport layer, but also because it is needed for route discovery and maintenance. (This conclusion differs from previous studies in reliability for sensor nets that did not simulate routing. [4]) Second, we have developed RMST (Reliable Multi-Segment Transport), a new transport layer, in order to understand the role of in- network processing for reliable data transfer. RMST benefits from diffusion routing, adding minimal additional control traffic. RMST guarantees delivery, even when multiple hops exhibit very high error rates. 1 Introduction Wireless sensor networks provide an economical, fully distributed, sensing and computing solution for environments where conventional networks are impractical. This paper explores the design decisions related to providing reliable data transport in sensor nets. The reliable data transport problem in sensor nets is multi-faceted. The emphasis on energy conservation in sensor nets implies that poor paths should not be artificially bolstered via mechanisms such as MAC layer ARQ during route discovery and path selection [1]. Path maintenance, on the other hand, benefits from well- engineered recovery either at the MAC layer or the transport layer, or both. Recovery should not be costly however, since many applications in sensor nets are impervious to occasional packet loss, relying on the regular delivery of coarse-grained event descriptions. Other applications require loss detection and repair. These aspects of reliable data transport include the provision of guaranteed delivery and fragmentation/ reassembly of data entities larger than the network MTU. Sensor networks have different constraints than traditional wired nets. First, energy constraints are paramount in sensor networks since nodes can often not be recharged, so any wasted energy shortens their useful lifetime [2]. This work was supported by DARPA under grant DABT63-99-1-0011 as part of the SCAADS project, and was also made possible in part due to support from Intel Corporation and Xerox Corporation. Fred Stann and John Heidemann are with USC/Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, CA, USA E-mail: fstann@usc.edu, johnh@isi.edu. 2 Architectural Choices There are a number of key areas to consider when engineering reliability for sensor nets. Many current sensor networks exhibit high loss rates compared to wired networks (2% to 30% to immediate neighbors)[1,5,6]. While error detection and correction at the physical layer are important, approaches at the MAC layer and higher adapt well to the very wide range of loss rates seen in sensor networks and are the focus of this paper. MAC layer protocols can ameliorate PHY layer unreliability, and transport layers can guarantee delivery. An important question for this paper is the trade off between implementation of reliability at the MAC layer (i.e. hop to hop) vs. the Transport layer, which has traditionally been concerned with end-to-end reliability. Because sensor net applications are distributed, we also considered implementing reliability at the application layer. Our goal is to minimize the cost of repair in terms of transmission.

650 citations