scispace - formally typeset
Search or ask a question
Author

Kaixian Chen

Bio: Kaixian Chen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Virtual screening & Docking (molecular). The author has an hindex of 47, co-authored 380 publications receiving 9209 citations. Previous affiliations of Kaixian Chen include Shanghai University & East China University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Structural-based investigations and the final 3D-QSAR results provide clear guidelines and accurate activity predictions for novel HIVPR inhibitors.
Abstract: The Lamarckian genetic algorithm of AutoDock 30 has been used to dock 27 3(S)-amino-2(S)-hydroxyl-4-phenylbutanoic acids (AHPBAs) into the active site of HIV-1 protease (HIVPR) The binding mode w

41 citations

Journal ArticleDOI
TL;DR: New insights are cast on the mechanism of AmtB-mediated passage of NH3 across cellular membranes using conventional molecular dynamics simulations, which revealed that the neutral molecule, NH3, passes automatically through the channel upon its arrival at the Am2 site and that the function of the channel as a one-way valve for passage ofNH3 is not determined by the cytoplasmic exit gate but, rather, by the periplasmic entrance gate of theChannel.

40 citations

Journal ArticleDOI
TL;DR: Based on modeling and simulations, a mechanism of the dual action of SPD and a subsequent signal transduction model is proposed and further mutagenesis and biophysical experiments are needed to test and improve the proposed dual action mechanism.

40 citations

Journal ArticleDOI
TL;DR: Results indicate that reduction of apoptosis and oxidative stress might account for the protection effect of CD1, which provided a better understanding of the mechanisms of the antidiabetic effects of procyanidin oligomers.
Abstract: In previous studies, A-type procyanidin oligomers isolated from Cinnamomum tamala were proved to possess antidiabetic effect and protect pancreatic β-cells in vivo. The aim of this study was to unveil the mechanisms of protecting pancreatic β-cells from palmitic acid-induced apoptosis by cinnamtannin D-1 (CD1), one of the main A-type procyanidin oligomers in C. tamala. CD1 was discovered to dose-dependently reduce palmitic acid- or H2O2-induced apoptosis and oxidative stress in INS-1 cells, MIN6 cells, and primary cultured murine islets. Moreover, CD1 could reverse palmitic acid-induced dysfunction of glucose-stimulated insulin secretion in primary cultured islets. These results indicate that reduction of apoptosis and oxidative stress might account for the protection effect of CD1, which provided a better understanding of the mechanisms of the antidiabetic effects of procyanidin oligomers.

40 citations

Journal ArticleDOI
TL;DR: A review of the biological effects of various C -glycosylflavonoids and their structure-activity relationships can be found in this article, where the authors focus on the biological properties of C-GloSs.

39 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
11 Jun 2020-Nature
TL;DR: A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.
Abstract: A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019–2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1–4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds—including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds—as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available. A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.

2,845 citations

Journal ArticleDOI
TL;DR: A number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens are described.
Abstract: This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

2,791 citations