scispace - formally typeset
Search or ask a question
Author

Kaixian Chen

Bio: Kaixian Chen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Virtual screening & Docking (molecular). The author has an hindex of 47, co-authored 380 publications receiving 9209 citations. Previous affiliations of Kaixian Chen include Shanghai University & East China University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a crack-free and lamella-like interfacial architecture in the transition region of a stainless steel/Ni-based superalloy bimetal conjugated by laser directed energy deposition was obtained.

7 citations

Journal ArticleDOI
TL;DR: A survey of techniques and their applications in the development of promising anti-SARS agents is presented.

7 citations

Journal ArticleDOI
TL;DR: The methodology ofSMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of the authors' own examples.
Abstract: Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dynamics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be accessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of binding and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APAfrom HIV-1 reverse transcriptase.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a framework by integrating the sequence, structural topology, and particular dynamics features to characterize the functional context and druggabilities of PTMs in the well-known kinase family.
Abstract: Post-translational modification (PTM) on protein plays important roles in the regulation of cellular function and disease pathogenesis. The systematic analysis of PTM dynamics presents great opportunities to enlarge the target space by PTM allosteric regulation. Here, we presented a framework by integrating the sequence, structural topology, and particular dynamics features to characterize the functional context and druggabilities of PTMs in the well-known kinase family. The machine learning models with these biophysical features could successfully predict PTMs. On the other hand, PTMs were identified to be significantly enriched in the reported allosteric pockets and the allosteric potential of PTM pockets were thus proposed through these biophysical features. In the end, the covalent inhibitor DC-Srci-6668 targeting the PTM pocket in c-Src kinase was identified, which inhibited the phosphorylation and locked c-Src in the inactive state. Our findings represent a crucial step toward PTM-inspired drug design in the kinase family.

7 citations

Journal ArticleDOI
TL;DR: In this article , a blue-black grass-like microstructure film composed of orthorhombic Cu(OH)2 and monoclinic CuO was successfullysynthesized by immersing copper foils in 0.03 M ammonia solution at 15 °C for 36 h.

7 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
11 Jun 2020-Nature
TL;DR: A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.
Abstract: A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019–2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1–4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds—including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds—as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available. A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.

2,845 citations

Journal ArticleDOI
TL;DR: A number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens are described.
Abstract: This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

2,791 citations