scispace - formally typeset
Search or ask a question
Author

Kalachand Sain

Bio: Kalachand Sain is an academic researcher from Wadia Institute of Himalayan Geology. The author has contributed to research in topics: Clathrate hydrate & Geology. The author has an hindex of 27, co-authored 154 publications receiving 2185 citations. Previous affiliations of Kalachand Sain include National Geophysical Research Institute & Academy of Scientific and Innovative Research.


Papers
More filters
Journal ArticleDOI
16 Jul 2021-Science
TL;DR: In this paper, an analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak.
Abstract: On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. Over 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile debris flow that transported boulders >20 m in diameter, and scoured the valley walls up to 220 m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure resulted in a disaster, which highlights key questions about adequate monitoring and sustainable development in the Himalaya as well as other remote, high-mountain environments.

201 citations

Journal ArticleDOI
TL;DR: The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin this article.

167 citations

Journal ArticleDOI
TL;DR: In this article, two tomographic methods for assessing velocity models obtained from wide-angle seismic traveltime data are presented through four case studies, where a preferred model was derived using one or more of the subjective steps described above.
Abstract: Two tomographic methods for assessing velocity models obtained from wide-angle seismic traveltime data are presented through four case studies. The modelling/inversion of wide-angle traveltimes usually involves some aspects that are quite subjective. For example: (1) identifying and including later phases that are often difficult to pick within the seismic coda, (2) assigning specific layers to arrivals, (3) incorporating pre-conceived structure not specifically required by the data and (4) selecting a model parametrization. These steps are applied to maximize model constraint and minimize model non-uniqueness. However, these steps may cause the overall approach to appear ad hoc, and thereby diminish the credibility of the final model. The effect of these subjective choices can largely be addressed by estimating the minimum model structure required by the least subjective portion of the wide-angle data set: the first-arrival times. For data sets with Moho reflections, the tomographic velocity model can be used to invert the PmP times for a minimum-structure Moho. In this way, crustal velocity and Moho models can be obtained that require the least amount of subjective input, and the model structure that is required by the wide-angle data with a high degree of certainty can be differentiated from structure that is merely consistent with the data. The tomographic models are not intended to supersede the preferred models, since the latter model is typically better resolved and more interpretable. This form of tomographic assessment is intended to lend credibility to model features common to the tomographic and preferred models. Four case studies are presented in which a preferred model was derived using one or more of the subjective steps described above. This was followed by conventional first-arrival and reflection traveltime tomography using a finely gridded model parametrization to derive smooth, minimum-structure models. The case studies are from the SE Canadian Cordillera across the Rocky Mountain Trench, central India across the Narmada-Son lineament, the Iberia margin across the Galicia Bank, and the central Chilean margin across the Valparaiso Basin and a subducting seamount. These case studies span the range of modern wide-angle experiments and data sets in terms of shot‐receiver spacing, marine and land acquisition, lateral heterogeneity of the study area, and availability of wide-angle reflections and coincident near-vertical reflection data. The results are surprising given the amount of structure in the smooth, tomographically derived models that is consistent with the more subjectively derived models. The results show that exploiting the complementary nature of the subjective and tomographic approaches is an effective strategy for the analysis of wide-angle traveltime data.

165 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed several approaches based on seismic traveltime tomography, full-waveform inversion, amplitude versus offset (AVO) modeling and AVO attributes each coupled with rock-physics modeling, and utilized them for the quantification of gas hydrates.

101 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply differential effective medium theory to incorporate grain-displacing morphologies by which gas hydrate is included as vertical ellipsoids with aspect ratios ranging from those of thin veins up to those of nodules in an elastic anisotropic background.
Abstract: [1] Indian National Gas Hydrate Program Expedition 01 has established that clay-rich marine sediment from the Krishna-Godavari (KG) basin in the eastern Indian margin hosts one of the richest gas hydrate deposits in the world. Resistivity at-bit images and pressure cores reveal that the gas hydrate morphology in clay-rich sediment varies from complex vein structures (grain displacing) to invisible pore filling. Existing rock physics models, which relate acoustic data to in situ gas hydrate concentrations, generally assume isotropic pore-filling gas hydrate, which yields misleading concentration estimates for fractured fine-grained sediments. The anisotropic KG basin sediment presents additional complications. Here we apply differential effective medium theory to incorporate grain-displacing morphologies by which gas hydrate is included as vertical ellipsoids with aspect ratios ranging from those of thin veins up to those of nodules in an elastic anisotropic background. We have estimated gas hydrate concentrations from sonic velocities at hole 10D in the KG basin considering three basic gas hydrate morphologies: (i) pore filling, (ii) grain displacing, and (iii) a combination of grain displacing and pore filling. Average gas hydrate saturations for these three cases are 35–42%, 27–30%, and 33–41% of the total porosity, respectively, in the depth range 60–140 m below seafloor (mbsf). Saturation is highest at ∼67 mbsf for any morphology but the values differ between morphologies. For the pore-filling morphology, the maximum gas hydrate saturation of 56% is 18–22% higher than the grain-displacing morphology and 2–9% higher than the combined morphology. Estimates differ by ±6% of the sediment volume with rotations of gas hydrate veins from vertical to horizontal.

98 citations


Cited by
More filters
01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

01 Jan 2016

803 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments can be found in this paper, where the magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrates to changes in mechanical, thermal, or chemical boundary conditions.
Abstract: [1] Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

745 citations

Journal ArticleDOI
TL;DR: The Dharwar craton comprises two distinct parts separated by a steep N−S sinistral shear zone as discussed by the authors, which is characterised by NE−SW crustal shortening and steep N-S or NW−SE linear belts of calcalkaline, anatectic and juvenile granites and granodiorites.

428 citations

Journal ArticleDOI
TL;DR: This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade.
Abstract: Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring hydrates within the Earth, and for developing green technologies This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade Challenges, limitations, and future perspectives of each field are briefly discussed The overall objective of this review is to provide readers with an extensive overview of gas hydrates that we hope will stimulate further work on this riveting field

349 citations