scispace - formally typeset
Search or ask a question
Author

Kalanit Grill-Spector

Bio: Kalanit Grill-Spector is an academic researcher from Stanford University. The author has contributed to research in topics: Visual cortex & Temporal cortex. The author has an hindex of 48, co-authored 140 publications receiving 15827 citations. Previous affiliations of Kalanit Grill-Spector include Weizmann Institute of Science & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This work considers three models that have been proposed to account for repetition-related reductions in neural activity, and evaluates them in terms of their ability to accounts for the main properties of this phenomenon as measured with single-cell recordings and neuroimaging techniques.

2,185 citations

Journal ArticleDOI
TL;DR: Overall, these results indicate that the lateral occipital complex plays an important role in human object recognition.

1,272 citations

Journal ArticleDOI
01 Sep 1999-Neuron
TL;DR: The utility of fMR adaptation for revealing functional characteristics of neurons in fMRI studies is demonstrated, namely, reduction of the fMR signal due to repeated presentation of identical images.

1,205 citations

Journal ArticleDOI
TL;DR: Recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing are reviewed.
Abstract: The discovery and analysis of cortical visual areas is a major accomplishment of visual neuroscience. In the past decade the use of noninvasive functional imaging, particularly functional magnetic resonance imaging (fMRI), has dramatically increased our detailed knowledge of the functional organization of the human visual cortex and its relation to visual perception. The fMRI method offers a major advantage over other techniques applied in neuroscience by providing a large-scale neuroanatomical perspective that stems from its ability to image the entire brain essentially at once. This bird's eye view has the potential to reveal large-scale principles within the very complex plethora of visual areas. Thus, it could arrange the entire constellation of human visual areas in a unified functional organizational framework. Here we review recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing.

1,075 citations

Journal ArticleDOI
TL;DR: A novel experimental paradigm for fMRI, functional magnetic resonance-adaptation (fMR-A), is presented that enables to tag specific neuronal populations within an area and investigate their functional properties, and shows that LOC is less sensitive to changes in object size and position compared to changes of illumination and viewpoint.

1,060 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

6,284 citations

Journal ArticleDOI
TL;DR: Recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity are reviewed.
Abstract: The majority of functional neuroscience studies have focused on the brain's response to a task or stimulus. However, the brain is very active even in the absence of explicit input or output. In this Article we review recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity. Although several challenges remain, these studies have provided insight into the intrinsic functional architecture of the brain, variability in behaviour and potential physiological correlates of neurological and psychiatric disease.

6,135 citations

Journal ArticleDOI
TL;DR: Supporting this analysis, research shows that the various distances are cognitively related to each other, that theySimilarly influence and are influenced by level of mental construal, and that they similarly affect prediction, preference, and action.
Abstract: People are capable of thinking about the future, the past, remote locations, another person's perspective, and counterfactual alternatives. Without denying the uniqueness of each process, it is proposed that they constitute different forms of traversing psychological distance. Psychological distance is egocentric: Its reference point is the self in the here and now, and the different ways in which an object might be removed from that point-in time, in space, in social distance, and in hypotheticality-constitute different distance dimensions. Transcending the self in the here and now entails mental construal, and the farther removed an object is from direct experience, the higher (more abstract) the level of construal of that object. Supporting this analysis, research shows (a) that the various distances are cognitively related to each other, (b) that they similarly influence and are influenced by level of mental construal, and (c) that they similarly affect prediction, preference, and action.

4,114 citations