scispace - formally typeset
Search or ask a question
Author

Kalle von Feilitzen

Bio: Kalle von Feilitzen is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Gene & Transcriptome. The author has an hindex of 12, co-authored 17 publications receiving 11976 citations.

Papers
More filters
Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations

Journal ArticleDOI
18 Aug 2017-Science
TL;DR: A Human Pathology Atlas has been created as part of the Human Protein Atlas program to explore the prognostic role of each protein-coding gene in 17 different cancers, and reveals that gene expression of individual tumors within a particular cancer varied considerably and could exceed the variation observed between distinct cancer types.
Abstract: Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes.

2,276 citations

Journal ArticleDOI
26 May 2017-Science
TL;DR: A subcellular map of the human proteome is presented to facilitate functional exploration of individual proteins and their role in human biology and disease and integrated into existing network models of protein-protein interactions for increased accuracy.
Abstract: Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map ...

1,878 citations

Journal ArticleDOI
06 Mar 2020-Science
TL;DR: A comprehensive molecular dissection of the main regions of the human, pig, and mouse brain using transcriptomics and antibody-based mapping suggests similar regional organization and expression patterns in the three mammalian species, consistent with the view that basic brain architecture is preserved during mammalian evolution.
Abstract: The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain.

386 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations

Journal ArticleDOI
Zefang Tang1, Chenwei Li1, Boxi Kang1, Ge Gao1, Cheng Li1, Zemin Zhang 
TL;DR: GEPIA (Gene Expression Profiling Interactive Analysis) fills in the gap between cancer genomics big data and the delivery of integrated information to end users, thus helping unleash the value of the current data resources.
Abstract: Tremendous amount of RNA sequencing data have been produced by large consortium projects such as TCGA and GTEx, creating new opportunities for data mining and deeper understanding of gene functions. While certain existing web servers are valuable and widely used, many expression analysis functions needed by experimental biologists are still not adequately addressed by these tools. We introduce GEPIA (Gene Expression Profiling Interactive Analysis), a web-based tool to deliver fast and customizable functionalities based on TCGA and GTEx data. GEPIA provides key interactive and customizable functions including differential expression analysis, profiling plotting, correlation analysis, patient survival analysis, similar gene detection and dimensionality reduction analysis. The comprehensive expression analyses with simple clicking through GEPIA greatly facilitate data mining in wide research areas, scientific discussion and the therapeutic discovery process. GEPIA fills in the gap between cancer genomics big data and the delivery of integrated information to end users, thus helping unleash the value of the current data resources. GEPIA is available at http://gepia.cancer-pku.cn/.

5,980 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
TL;DR: UALCAN, an easy to use, interactive web-portal to perform to in-depth analyses of TCGA gene expression data, serves as a platform for in silico validation of target genes and for identifying tumor sub-group specific candidate biomarkers.

3,546 citations

Journal ArticleDOI
TL;DR: G:Profiler is now capable of analysing data from any organism, including vertebrates, plants, fungi, insects and parasites, and the 2019 update introduces an extensive technical rewrite making the services faster and more flexible.
Abstract: Biological data analysis often deals with lists of genes arising from various studies. The g:Profiler toolset is widely used for finding biological categories enriched in gene lists, conversions between gene identifiers and mappings to their orthologs. The mission of g:Profiler is to provide a reliable service based on up-to-date high quality data in a convenient manner across many evidence types, identifier spaces and organisms. g:Profiler relies on Ensembl as a primary data source and follows their quarterly release cycle while updating the other data sources simultaneously. The current update provides a better user experience due to a modern responsive web interface, standardised API and libraries. The results are delivered through an interactive and configurable web design. Results can be downloaded as publication ready visualisations or delimited text files. In the current update we have extended the support to 467 species and strains, including vertebrates, plants, fungi, insects and parasites. By supporting user uploaded custom GMT files, g:Profiler is now capable of analysing data from any organism. All past releases are maintained for reproducibility and transparency. The 2019 update introduces an extensive technical rewrite making the services faster and more flexible. g:Profiler is freely available at https://biit.cs.ut.ee/gprofiler.

2,959 citations