scispace - formally typeset
Search or ask a question

Showing papers by "Kalpattu K. Balasubramanian published in 2019"


Journal ArticleDOI
TL;DR: The state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.
Abstract: Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology.,In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated.,The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future.,This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.

50 citations


Journal ArticleDOI
TL;DR: In this paper, the tropoisomeric behavior of 4,4′-bichromenes and 4, 4''-bithiochromenes derivatives was examined. But, the authors focused on the torsional barrier about the internuclear axis.
Abstract: Axially chiral molecules have established undisputed importance in both medicinal chemistry and enantiomeric catalysis. The size, shape and hybridization of the substituent adjacent to the rotational axis greatly dictate atropisomerism. Herein, we examined the tropoisomeric behavior of 4,4′-bichromenes and 4,4′-bithiochromenes derivatives that were synthesized by a nickel catalyzed reductive homocoupling strategy. The as-synthesized 3,3′-disubstituted 4,4′-bichromenes displayed atropisomerism, as evidenced by chiral stationary phase HPLC, electronic circular dichroism and single crystal XRD studies. Insights into the torsional barrier about the internuclear axis in 4,4′-bichromenes were gained both experimentally and theoretically (DFT studies). The lower activation energy barrier (Ea) of approximately 12 kcal mol−1 as compared to that of fully aromatic 1,1′-binapthyl explains the conformationally unstable nature of 3,3′-unsubstituted 4,4′-bichromenes at room temperature.

2 citations