scispace - formally typeset
Search or ask a question
Author

Kalyanasundaram Seshadri

Bio: Kalyanasundaram Seshadri is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Diffusion flame & Combustion. The author has an hindex of 33, co-authored 94 publications receiving 4680 citations.


Papers
More filters
Journal ArticleDOI
01 Jan 2009
TL;DR: In this article, a mixture of n-decane 80% and 1,2,4-trimethylbenzene 20% by weight, called the Aachen surrogate, is selected for consideration as a possible surrogate of kerosene.
Abstract: Experimental and numerical studies are carried out to develop a surrogate that can reproduce selected aspects of combustion of kerosene. Jet fuels, in particular Jet-A1, Jet-A, and JP-8 are kerosene type fuels. Surrogate fuels are defined as mixtures of few hydrocarbon compounds with combustion characteristics similar to those of commercial fuels. A mixture of n-decane 80% and 1,2,4-trimethylbenzene 20% by weight, called the Aachen surrogate, is selected for consideration as a possible surrogate of kerosene. Experiments are carried out employing the counterflow configuration. The fuels tested are kerosene and the Aachen surrogate. Critical conditions of extinction, autoignition, and volume fraction of soot measured in laminar non premixed flows burning the Aachen surrogate are found to be similar to those in flames burning kerosene. A chemical-kinetic mechanism is developed to describe the combustion of the Aachen surrogate. This mechanism is assembled using previously developed chemical-kinetic mechanisms for the components: n-decane and 1,2,4-trimethylbenzene. Improvements are made to the previously developed chemical-kinetic mechanism for n-decane. The combined mechanisms are validated using experimental data obtained from shock tubes, rapid compression machines, jet stirred reactor, burner stabilized premixed flames, and a freely propagating premixed flame. Numerical calculations are performed using the chemical-kinetic mechanism for the Aachen surrogate. The calculated values of the critical conditions of autoignition and soot volume fraction agree well with experimental data. The present study shows that the chemical-kinetic mechanism for the Aachen surrogate can be employed to predict non premixed combustion of kerosene.

319 citations

Journal ArticleDOI
01 Jan 2000
TL;DR: In this paper, the extinction and auto-ignition of n-heptane in strained laminar flows under non-premixed conditions were investigated, and a detailed mechanism made UP of 2540 reversible elementary reactions among 557 species was used to calculate ignition delay times in homogeneous reactors.
Abstract: A study is performed to elucidate the mechanisms of extinction and autoignition of n-heptane in strained laminar flows under nonpremixed conditions. A previously developed detailed mechanism made UP of 2540 reversible elementary reactions among 557 species is the starting point for the study. The detailed mechanism was previously used to calculate ignition delay times in homogeneous reactors, and concentration histories of a number of species in plug-flow and jet-stirred reactors. An intermediate mechanism made up of 1282 reversible elementary reactions among 282 species and a short mechanism made up of 770 reversible elementary reactions among 160 species are assembled from this detailed mechanism. Ignition delay times in an isochoric homogeneous reactor calculated using the intermediate and the short mechanism are found to agree well with those calculated using the detailed mechanism. The intermediate and the short mechanism are used to calculate extinction and autoignition of n-heptane in strained laminar flows. Steady laminar flow of two counter flowing Streams toward a stagnation plane is considered. One stream made up of prevaporized n-heptane and nitrogen is injected from the fuel boundary and the other stream made up of air and nitrogen is injected from the oxidizer boundary. Critical conditions of extinction and autoignition given by the strain rate, temperature and concentrations of the reactants at the boundaries, are calculated. The results are found to agree well with experiments. Sensitivity analysis is carried out to evaluate the influence of various elementary reactions on autoignition. At all values of the strain rate investigated here, high temperature chemical processes are found to control autoignition. In general, the influence of low temperature chemistry is found to increase with decreasing strain. A key finding of the present study is that strain has more influence on low temperature chemistry than the temperature of the reactants.

303 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical approach is employed to describe combustion of isomers of butanol, and the complete set of the primary propagation reactions for butanol isomers proceeds from the extension of the kinetic parameters.

247 citations

Journal ArticleDOI
TL;DR: In this paper, a skeletal 56-step mechanism for n-heptane is further reduced to a short 30-stage mechanism containing two isomers of the nheptyl-redical and reactions describing both the high temperature and the low temperature chemistry.

242 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
01 Jan 1988
TL;DR: In this article, it is shown that the inner structure of the flamelets is one-dimensional and time dependent, and a new coordinate transformation using the mixture fraction Z as independent variable leads to a universal description.
Abstract: The laminar flamelet concept covers a regime in turbulent combustion where chemistry (as compared to transport processes) is fast such that it occurs in asymptotically thin layers—called flamelets—embedded within the turbulent flow field. This situation occurs in most practical combustion systems including reciprocating engines and gas turbine combustors. The inner structure of the flamelets is one-dimensional and time dependent. This is shown by an asymptotic expansion for the Damkohler number of the rate determining reaction which is assumed to be large. Other non-dimensional chemical parameters such as the nondimensional activation energy or Zeldovich number may also be large and may be related to the Damkohler number by a distinguished asymptoiic limit. Examples of the flamelet structure are presented using onestep model kinetics or a reduced four-step quasi-global mechanism for methane flames. For non-premixed combustion a formal coordinate transformation using the mixture fraction Z as independent variable leads to a universal description. The instantaneous scalar dissipation rate χ of the conserved scalar Z is identified to represent the diffusion time scale that is compared with the chemical time scale in the definition of the Damkohler number. Flame stretch increases the scalar dissipation rate in a turbulent flow field. If it exceeds a critical value χ q the diffusion flamelet will extinguish. Considering the probability density distribution of χ , it is shown how local extinction reduces the number of burnable flamelets and thereby the mean reaction rate. Furthermore, local extinction events may interrupt the connection to burnable flamelets which are not yet reached by an ignition source and will therefore not be ignited. This phenomenon, described by percolation theory, is used to derive criteria for the stability of lifted flames. It is shown how values of ∋ q obtained from laminar experiments scale with turbulent residence times to describe lift-off of turbulent jet diffusion flames. For non-premixed combustion it is concluded that the outer mixing field—by imposing the scalar dissipation rate—dominates the flamelet behaviour because the flamelet is attached to the surface of stoichiometric mixture. The flamelet response may be two-fold: burning or non-burning quasi-stationary states. This is the reason why classical turbulence models readily can be used in the flamelet regime of non-premixed combustion. The extent to which burnable yet non-burning flamelets and unsteady transition events contribute to the overall statistics in turbulent non-premixed flames needs still to be explored further. For premixed combustion the interaction between flamelets and the outer flow is much stronger because the flame front can propagate normal to itself. The chemical time scale and the thermal diffusivity determine the flame thickness and the flame velocity. The flamelet concept is valid if the flame thickness is smaller than the smallest length scale in the turbulent flow, the Kolmogorov scale. Also, if the turbulence intensity v′ is larger than the laminar flame velocity, there is a local interaction between the flame front and the turbulent flow which corrugates the front. A new length scale L G =v F 3 /∈ , the Gibson scale, is introduced which describes the smaller size of the burnt gas pockets of the front. Here v F is the laminar flame velocity and ∈ the dissipation of turbulent kinetic energy in the oncoming flow. Eddies smaller than L G cannot corrugate the flame front due to their smaller circumferential velocity while larger eddies up to the macro length scale will only convect the front within the flow field. Flame stretch effects are the most efficient at the smallest scale L G . If stretch combined with differential diffusion of temperature and the deficient reactant, represented by a Lewis number different from unity, is imposed on the flamelet, its inner structure will respond leading to a change in flame velocity and in some cases to extinction. Transient effects of this response are much more important than for diffusion flamelets. A new mechanism of premixed flamelet extinction, based on the diffusion of radicals out of the reaction zone, is described by Rogg. Recent progress in the Bray-Moss-Libby formulation and the pdf-transport equation approach by Pope are presented. Finally, different approaches to predict the turbulent flame velocity including an argument based on the fractal dimension of the flame front are discussed.

1,268 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: A review of the current state of knowledge of the fundamental sooting processes, including the chemistry of soot precursors, particle nucleation and mass/size growth, can be found in this article.
Abstract: Over the last two decades, our understanding of soot formation has evolved from an empirical, phenomenological description to an age of quantitative modeling for at least small fuel compounds. In this paper, we review the current state of knowledge of the fundamental sooting processes, including the chemistry of soot precursors, particle nucleation and mass/size growth. The discussion shows that though much progress has been made, critical gaps remain in many areas of our knowledge. We propose the roles of certain aromatic radicals resulting from localized π electron structures in particle nucleation and subsequent mass growth. The existence of these free radicals provides a rational explanation for the strong binding forces needed for forming initial clusters of polycyclic aromatic hydrocarbons. They may also explain a range of currently unexplained sooting phenomena, including the large amount of aliphatics observed in nascent soot formed in laminar premixed flames and the mass growth of soot in the absence of gas-phase H atoms. While the above suggestions are inspired, to an extent, by recent theoretical findings from the materials research community, this paper also demonstrates that the knowledge garnered through our longstanding interest in soot formation may well be carried over to flame synthesis of functional nanomaterials for clean and renewable energy applications. In particular, work on flame-synthesized thin films of nanocrystalline titania illustrates how our combustion knowledge might be useful for developing advanced yet inexpensive thin-film solar cells and chemical sensors for detecting gaseous air pollutants.

953 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic mechanism has been developed to describe the oxidation of small hydrocarbon and oxygenated hydrocarbon species, such as formaldehyde, methanol, acetaldehyde, and ethanol.
Abstract: A detailed chemical kinetic mechanism has been developed to describe the oxidation of small hydrocarbon and oxygenated hydrocarbon species. The reactivity of these small fuels and intermediates is of critical importance in understanding and accurately describing the combustion characteristics, such as ignition delay time, flame speed, and emissions of practical fuels. The chosen rate expressions have been assembled through critical evaluation of the literature, with minimum optimization performed. The mechanism has been validated over a wide range of initial conditions and experimental devices, including flow reactor, shock tube, jet-stirred reactor, and flame studies. The current mechanism contains accurate kinetic descriptions for saturated and unsaturated hydrocarbons, namely methane, ethane, ethylene, and acetylene, and oxygenated species; formaldehyde, methanol, acetaldehyde, and ethanol.

925 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed kinetic mechanism for the pyrolysis and combustion of a large variety of fuels at high temperature conditions is presented, and the authors identify aspects of the mechanism that require further revision.

817 citations