scispace - formally typeset
Search or ask a question
Author

Kamakhya Prasad Ghatak

Other affiliations: University of Calcutta
Bio: Kamakhya Prasad Ghatak is an academic researcher from National Institute of Technology Agartala. The author has contributed to research in topics: Magnetic field & Electron. The author has an hindex of 14, co-authored 209 publications receiving 1029 citations. Previous affiliations of Kamakhya Prasad Ghatak include University of Calcutta.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple analysis of the carrier contribution to the elastic constants in ultrathin films of Bi under magnetic quantization in accordance with McClure-Choi, Cohen, Abrikosov, Lax and parabolic ellipsoidal band models in the presence of spin, broadening and temperature respectively is presented.

25 citations

Journal ArticleDOI
TL;DR: In this article, a simple theoretical analysis of the effective electron mass (EEM) at the Fermi level for III-V, ternary and quaternary materials, on the basis of a newly formulated electron energy spectra in the presence of light waves whose unperturbed energy band structures are defined by the three-band model of Kane, is presented.
Abstract: We present a simple theoretical analysis of the effective electron mass (EEM) at the Fermi level for III–V, ternary and quaternary materials, on the basis of a newly formulated electron energy spectra in the presence of light waves whose unperturbed energy band structures are defined by the three-band model of Kane The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings under different external conditions It has been observed that the unperturbed isotropic energy spectrum in the presence of light changes into an anisotropic dispersion relation with the energy-dependent mass anisotropy In the presence of light, the conduction band moves vertically upward and the band gap increases with the intensity and colours of light It has been found, taking n-InAs, n-InSb, n-Hg1−xCdxTe and n-In1−xGaxAsyP1−y lattice matched to InP as examples, that the EEM increases with increasing electron concentration, intensity and wavelength in various manners The strong dependence of the effective momentum mass (EMM) at the Fermi level on both the light intensity and wavelength reflects the direct signature of the light waves which is in contrast with the corresponding bulk specimens of the said materials in the absence of photo-excitation The rate of change is totally band-structure-dependent and is influenced by the presence of the different energy band constants The well known result for the EEM at the Fermi level for degenerate wide gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions, and this compatibility is the indirect test of our generalized formalism

23 citations

Journal ArticleDOI
TL;DR: In this paper, the thermoelectric power in the presence of a large magnetic field (TPM) in heavily doped III-V, II-VI, PbTe/PbSnTe, strained layer and HgTe/CdTe quantum dot superlattices (QDSLs) with graded structures was analyzed.
Abstract: We study theoretically the thermoelectric power in the presence of a large magnetic field (TPM) in heavily doped III–V, II–VI, PbTe/PbSnTe, strained layer and HgTe/CdTe quantum dot superlattices (QDSLs) with graded structures on the basis of newly formulated electron energy spectra and compare the same with that of the constituent materials. It has been found, taking heavily doped GaAs/Ga1−xAlxAs, CdS/CdTe, PbTe/PbSnTe, InAs/GaSb and HgTe/CdTe QDSLs as examples, that the TPM increases with increasing inverse electron concentration and film thickness, respectively, in different oscillatory manners and the nature of oscillations is totally band structure dependent. We have also suggested the experimental methods of determining the Einstein relation for the diffusivity–mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws.

23 citations

Journal ArticleDOI
TL;DR: In this paper, a simple theory is developed of the optical absorption coefficient (OAC) in nonparabolic semiconductors on the basis of the three-band model of Kane, by considering the wave-vector (k) dependence of optical matrix element.
Abstract: A simple theory is developed of the optical absorption coefficient (OAC) in nonparabolic semiconductors on the basis of the three-band model of Kane, by considering the wave-vector (k) dependence of the optical matrix element. It has been found that the OAC is proportional to [(ℏω)2−Eg2]1/2 (ℏω and Eg are the energy of the incident radiation and the bandgap, respectively) instead of [(ℏω)−Eg]1/2, the conventional form. It has been demonstrated, by taking n-InAs, n-InSb, Hg1−xCdxTe, and In1−xGaxAs1−yP1−y lattice matched to InP as examples, that the OAC increases with increasing photon energy and the value of the same coefficient in the three band model of Kane is greater than that in parabolic energy bands in all the cases. The well-known result for wide gap materials having parabolic energy bands has also been obtained from our generalized formulation under certain limiting condition.

20 citations

Journal ArticleDOI
TL;DR: In this article, the electronic contribution of ultrathin films of ternary and quaternary alloys in the presence of an arbitrarily oriented magnetic field on the basis of a new electron dispersion law was studied.
Abstract: An attempt is made to study the electronic contribution to the elastic constants in ultrathin films of ternary and quaternary alloys in the presence of an arbitrarily oriented magnetic field on the basis of a new electron dispersion law. It is found, taking and lattice matched to InP as examples of ternary and quaternary alloys, that the said contribution increases with increasing surface electron concentration and the band non-parabolicity enhances its magnitude. They decrease with increasing film thickness and alloy composition in various oscillatory manners. Moreover, the numerical values of the contributions in ternary materials are greater than those in quaternary compounds. An experimental method is suggested for determining the electronic contribution to the elastic constants in degenerate compounds having arbitrary dispersion laws. In addition, the well known results for wide-band-gap ultrathin materials in the absence of a magnetic field have been obtained as special cases of our generalized formulations under certain limiting conditions.

20 citations


Cited by
More filters
Journal ArticleDOI
23 Apr 2012-Small
TL;DR: Progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage is reviewed, along with some discussions on challenges and perspectives in this exciting field.
Abstract: It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field.

1,287 citations

Book
01 Jan 2005
TL;DR: In this article, the authors present an overview of the properties of optical dispersion in terms of properties such as: 1.1 Ionicity. 2.2 Specific Heat. 3.4 Microhardness. 4.5 Sound Velocity.
Abstract: Series Preface. Preface. Acknowledgements. 1 Structural Properties. 1.1 Ionicity. 1.2 Elemental Isotopic Abundance and Molecular Weight. 1.3 Crystal Structure and Space Group. 1.4 Lattice Constant and Its Related Parameters. 1.5 Structural Phase Transition. 1.6 Cleavage Plane. 2 Thermal Properties. 2.1 Melting Point and Its Related Parameters. 2.2 Specific Heat. 2.3 Debye Temperature. 2.4 Thermal Expansion Coefficient. 2.5 Thermal Conductivity and Diffusivity. 3 Elastic Properties. 3.1 Elastic Constant. 3.2 Third-Order Elastic Constant. 3.3 Young's Modulus, Poisson's Ratio and Similar. 3.4 Microhardness. 3.5 Sound Velocity. 4 Lattice Dynamic Properties. 4.1 Phonon Dispersion Relation. 4.2 Phonon Frequency. 4.3 Mode Gruneisen Parameter. 4.4 Phonon Deformation Potential. 5 Collective Effects and Some Response Characteristics. 5.1 Piezoelectric and Electromechanical Constants. 5.2 Frohlich Coupling Constant. 6 Energy-Band Structure: Energy-Band Gaps. 6.1 Basic Properties. 6.2 E0-Gap Region. 6.3 Higher-Lying Direct Gap. 6.4 Lowest Indirect Gap. 6.5 Conduction-Valley Energy Separation. 6.6 Direct-Indirect-Gap Transition Pressure. 7 Energy-Band Structure: Effective Masses. 7.1 Electron Effective Mass: G Valley. 7.2 Electron Effective Mass: Satellite Valley. 7.3 Hole Effective Mass. 8 Deformation Potentials. 8.1 Intravalley Deformation Potential: G Point. 8.2 Intravalley Deformation Potential: High-Symmetry Points. 8.3 Intervalley Deformation Potential. 9 Electron Affinity and Schottky Barrier Height. 9.1 Electron Affinity. 9.2 Schottky Barrier Height. 10 Optical Properties. 10.1 Summary of Optical Dispersion Relations. 10.2 The Reststrahlen Region. 10.3 At or Near The Fundamental Absorption Edge. 10.4 The Interband Transition Region. 10.5 Free-Carrier Absorption and Related Phenomena. 11 Elastooptic, Electrooptic and Nonlinear Optical Properties 11.1 Elastooptic Effect. 11.2 Linear Electrooptic Constant. 11.3 Quadratic Electrooptic Constant. 11.4 Franz-Keldysh Effect. 11.5 Nonlinear Optical Constant. 12 Carrier Transport Properties. 12.1 Low-Field Mobility: Electrons. 12.2 Low-Field Mobility: Holes. 12.3 High-Field Transport: Electrons. 12.4 High-Field Transport: Holes. 12.5 Minority-Carrier Transport: Electrons in p-Type Materials. 12.6 Minority-Carrier Transport: Holes in n-Type Materials. 12.7 Impact Ionization Coefficient. Index.

258 citations

Journal ArticleDOI
Juan Bisquert1
TL;DR: This work examines in detail models for carrier transport in nanocrystalline semiconductors and organic materials with the following distributions: single and two-level systems, exponential and Gaussian density of states, and treats both the multiple trapping models and the hopping model in the transport energy approximation.
Abstract: The carrier transport properties in nanocrystalline semiconductors and organic materials play a key role for modern organic/inorganic devices such as dye-sensitized (DSC) and organic solar cells, organic and hybrid light-emitting diodes (OLEDs), organic field-effect transistors, and electrochemical sensors and displays. Carrier transport in these materials usually occurs by transitions in a broad distribution of localized states. As a result the transport is dominated by thermal activation to a band of extended states (multiple trapping), or if these do not exist, by hopping via localized states. We provide a general view of the physical interpretation of the variations of carrier transport coefficients (diffusion coefficient and mobility) with respect to the carrier concentration, or Fermi level, examining in detail models for carrier transport in nanocrystalline semiconductors and organic materials with the following distributions: single and two-level systems, exponential and Gaussian density of states. We treat both the multiple trapping models and the hopping model in the transport energy approximation. The analysis is simplified by thermodynamic properties: the chemical capacitance, Cμ, and the thermodynamic factor, χn, that allow us to derive many properties of the chemical diffusion coefficient, Dn, used in Fick’s law. The formulation of the generalized Einstein relation for the mobility to diffusion ratio shows that the carrier mobility is proportional to the jump diffusion coefficient, DJ, that is derived from single particle random walk. Characteristic experimental data for nanocrystalline TiO2 in DSC and electrochemically doped conducting polymers are discussed in the light of these models.

185 citations

Journal ArticleDOI

181 citations

Journal ArticleDOI
15 Feb 2019-Science
TL;DR: A high-gain, fully inkjet-printed Schottky barrier organic thin-film transistor amplifier circuit that delivered gain near the theoretical limit at a power below 1 nanowatt and detected electrophysiological signals from the skin with a wearable device is reported.
Abstract: Overcoming the trade-offs among power consumption, fabrication cost, and signal amplification has been a long-standing issue for wearable electronics. We report a high-gain, fully inkjet-printed Schottky barrier organic thin-film transistor amplifier circuit. The transistor signal amplification efficiency is 38.2 siemens per ampere, which is near the theoretical thermionic limit, with an ultralow power consumption of 60 decibels and noise voltage of <0.3 microvolt per hertz1/2 at 100 hertz.

177 citations